TD 0: RÉVISIONS SUR LES GROUPES

Exercice 1. Soit (G,\cdot) un groupe; on définit sur G la loi de composition interne \ast par: pour tous a et b dans G, $a \ast b = b \cdot a$. Montrer que (G,\ast) est un groupe (on l'appelle « groupe opposé à G »). Donner un isomorphisme entre (G,\cdot) et (G,\ast) .

Exercice 2. Un groupe est dit monogène s'il est engendré par un de ses éléments.

- 1. Montrer qu'un groupe est monogène si et seulement s'il est isomorphe soit à \mathbb{Z} , soit à $\mathbb{Z}/n\mathbb{Z}$ pour un entier non nul n.
- 2. Donner les générateurs de \mathbb{Z} , de $\mathbb{Z}/n\mathbb{Z}$.
- 3. Faire la liste des sous-groupes de \mathbb{Z} , de $\mathbb{Z}/n\mathbb{Z}$.
- 4. Soient n et m des entiers non nuls. Déterminer les morphismes de groupes : de \mathbb{Z} dans lui-même ; de \mathbb{Z} dans $\mathbb{Z}/n\mathbb{Z}$; de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$.
- 5. Donner le groupe des automorphismes de \mathbb{Z} , de $\mathbb{Z}/n\mathbb{Z}$.

Exercice 3. Montrer qu'un groupe dans lequel tous les carrés sont triviaux est commutatif. Un tel groupe est-il fini?

Exercice 4. Montrer que les éléments d'un groupe d'ordre 4 sont d'ordre 1, 2 ou 4. Décrire les groupes d'ordre 4.

Exercice 5. Montrer qu'un groupe fini d'ordre pair contient au moins un élément d'ordre 2; montrer qu'il en contient en fait un nombre impair.

Exercice 6. Soient G un groupe et x et y des éléments de G.

- 1. Montrer que xy et yx ont même ordre (éventuellement infini).
- 2. On suppose que x et y commutent et sont d'ordre fini; montrer que G contient un élément dont l'ordre est le ppcm des ordres de x et y. Indication: on pourra commencer par le cas où ces ordres sont premiers entre eux.

Exercice 7. Caractériser les groupes dont l'ensemble des sous-groupes est fini.

Exercice 8. Soit p un nombre premier.

- 1. Soit V un groupe abélien dans lequel tout élément v vérifie pv = 0; montrer que V possède une unique structure d'espace vectoriel sur le corps $\mathbb{Z}/p\mathbb{Z}$.
- 2. Soit V un espace vectoriel de dimension finie sur le corps $\mathbb{Z}/p\mathbb{Z}$; on note n sa dimension.
 - (a) Montrer que V est fini, de cardinal p^n .
 - (b) Soit W une partie de V; montrer que W est un sous-espace vectoriel de V si et seulement si W est un sous-groupe de V.
 - (c) Qu'en est-il si on remplace $\mathbb{Z}/p\mathbb{Z}$ par \mathbb{C} ?

Exercice 9. Déterminer les groupes dont le groupe des automorphismes est trivial.

Exercice 10. Le groupe $(\mathbb{Q}; +)$ peut-il être engendré par une famille finie? Qu'en est-il pour $(\mathbb{Q}^*; \times)$?

Exercice 11. Donner une partie génératrice et la liste des sous-groupes de \mathfrak{S}_3 .

Exercice 12. Soient n dans \mathbb{N}^* , $(i_1 \dots i_r)$ un cycle de \mathfrak{S}_n de longueur r et σ un élément de \mathfrak{S}_n . Montrer qu'on a la relation $\sigma(i_1 \dots i_r)\sigma^{-1} = (\sigma(i_1) \dots \sigma(i_r))$.

Exercice 13. Soit n un entier naturel non nul; on note μ_n le groupe des racines nièmes de l'unité dans \mathbb{C} . Combien y a-t-il d'isomorphismes de groupes entre μ_n et $\mathbb{Z}/n\mathbb{Z}$?

Exercice 14. Soit p un nombre premier; on note $\mu_{p^{\infty}}$ l'union des groupes μ_{p^n} lorsque n décrit \mathbb{N}^* .

- 1. Soient m et n dans \mathbb{N}^* avec m supérieur ou égal à n; montrer que μ_{p^n} est inclus dans μ_{p^m} .
- 2. Montrer que $\mu_{p^{\infty}}$ est un sous-groupe de \mathbb{C}^* et que tous ses éléments ont pour ordre une puissance de p.
- 3. Montrer que les sous-groupes stricts de $\mu_{p^{\infty}}$ sont exactement les μ_{p^n} , où n décrit \mathbb{N}^* .

Exercice 15. Soient k un corps et n dans \mathbb{N}^* .

- 1. Donner un morphisme de groupes injectif de \mathfrak{S}_n dans $\mathrm{GL}_n(k)$.
- 2. Montrer que les parties suivantes sont des sous-groupes de $GL_n(k)$:
 - (a) les matrices diagonales à coefficients diagonaux non nuls;
 - (b) les matrices triangulaires supérieures à coefficients diagonaux non nuls;
 - (c) les matrices triangulaires supérieures à coefficients diagonaux égaux à 1;
 - (d) les matrices ayant exactement un élément non nul par ligne et par colonne.
- 3. On suppose k fini; donner le cardinal de $GL_n(k)$ et de chacun des sous-groupes précédents.

Exercice 16. Soient n un entier naturel non nul et G un sous-groupe fini de $GL_n(\mathbb{C})$.

- 1. Montrer que tous les éléments de G sont diagonalisables.
- 2. On suppose de plus G commutatif; montrer que tous les éléments de G sont diagonalisables dans une même base.
- 3. Montrer que ces résultats ne tiennent plus si on ne suppose plus G fini ou si on remplace \mathbb{C} par un corps de caractéristique non nulle.