Algèbre 1 2010–2011

TD 8: corrigé

13. Théorème des deux carrés et irréductibles de $\mathbb{Z}[i]$ (TD 7)

1. Déjà, on peut factoriser une somme de deux carrés dans $\mathbb{Z}[i]$: $a^2 + b^2 = (a - ib)(a + ib)$. En outre, on a vu lors du TD précédent que les seuls irréductibles de $\mathbb{Z}[i]$ sont ± 1 et $\pm i$. Ainsi, si le nombre premier p s'écrit $p = a^2 + b^2$, la décomposition p = (a - ib)(a + ib) ne contient pas d'irréductibles (sinon, on aurait |p| = 1, ce qui est absurde) et p est bien réductible dans $\mathbb{Z}[i]$.

Pour la réciproque, on rappelle que le carré du module définit une application multiplicative $\mathbb{N}: \mathbb{Z}[i] \to \mathbb{N}$ (la « norme » des arithméticiens). Ainsi, une décomposition du nombre premier p = (a+ib)(c+id) dans $\mathbb{Z}[i]$ donnerait une décomposition

$$p^2 = N(p) = N(a+ib) N(c+id) = (a^2+b^2)(c^2+d^2)$$

où ni a+ib ni c+id n'est nul ou inversible. Les facteurs (a^2+b^2) et (c^2+d^2) sont donc > 1 et la primalité de p implique : $p=a^2+b^2=c^2+d^2$ et p se décompose bien comme une somme de deux carrés.

2. On a un morphisme d'évaluation

auquel on va chercher à appliquer le théorème d'isomorphisme. L'image de év $_i$ est l'ensemble des nombres complexes obtenus à partir de \mathbb{Z} et de i par sommes et produits. Puisque $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} , on a clairement im év $_i = \mathbb{Z}[i]$.

Le noyau de év_i est l'ensemble $\{P \in \mathbb{Z}[X] \mid P(i) = 0\}$. Notons que tout polynôme réel s'annulant en i s'annule également en -i. On peut alors, d'après l'exercice 2 de la feuille de TD 7, effectuer la division euclidienne de tout polynôme $P \in \mathbb{Z}[X]$ par le polynôme unitaire $(X-i)(X+i)=X^2-1\in\mathbb{Z}[X]: P=(X^2+1)Q+R$, avec deg $R \le 1$. Puisque aucun polynôme réel de degré ≤ 1 , à part le polynôme nul, ne s'annule en i, on obtient donc

$$P(i) = 0 \Leftrightarrow \exists Q \in \mathbb{Z}[X] : P = (X^2 + 1)Q,$$

c'est-à-dire l'égalité $\ker \text{\'ev}_i = (X^2 + 1)$. D'après le théorème d'isomorphisme, on a donc un isomorphisme :

$$\mathbb{Z}[i] \simeq \mathbb{Z}[X]/(X^2+1).$$

L'exercice 6 de la feuille de TD 7 implique que, lorsque l'on quotiente un anneau par un idéal (x, y), l'anneau quotient est isomorphe au quotient de A/(x) par l'idéal $(\overline{y}) \triangleleft A/(x)$ engendré par l'image \overline{y} de y par l'application canonique $A \rightarrow A/(x)$. Par symétrie, il est donc également isomorphe à l'anneau obtenu en échangeant les rôles de x et y. Cela fournit donc,

dans le cas de l'idéal $(p, X^2 + 1) \triangleleft \mathbb{Z}[X]$, une suite d'isomorphismes :

$$\mathbb{Z}[i]/(p) \simeq (\mathbb{Z}[X]/(X^2+1))/(p)$$
 d'après le point précédent $\simeq \mathbb{Z}[X]/(X^2+1,p)$ $\simeq (\mathbb{Z}[X]/(p))/(X^2+1)$ $\simeq \mathbb{F}_p[X]/(X^2+1).$

3. L'isomorphisme démontré à la question précédente implique que $\mathbb{Z}[i]/(p)$ est un corps si et seulement si $\mathbb{F}_p[X]/(X^2+1)$ l'est. Ainsi, (p) est un idéal maximal de l'anneau principal $\mathbb{Z}[i]$ si et seulement si (X^2+1) est un idéal maximal de l'anneau principal $\mathbb{F}_p[X]$. Or, on a vu au TD précédent que, dans un anneau principal, (x) est maximal si et seulement si x est irréductible. On a donc démontré l'équivalence

$$p$$
 irréductible dans $\mathbb{Z}[i] \iff X^2 + 1$ irréductible dans $\mathbb{F}_p[X]$.

Or, un polynôme de degré 2 est irréductible si et seulement s'il n'admet pas de racine. L'irréductibilité de p dans $\mathbb{Z}[i]$ est donc équivalente au fait que -1 n'est pas un carré dans \mathbb{F}_p , dont on a déjà vu qu'il était équivalent à la congruence $p \equiv 3 \mod 4$. (En fait, dans l'exercice sur le caractère de Legendre, on avait exclu le cas p = 2, dans lequel -1 = 1 est bien évidemment un carré et qui est évidemment la somme de deux carrés : $2 = 1^2 + 1^2$.)

4. Irréductibles dans $\mathbb{Z}[i]$, suite

- **1.** Tout d'abord, tout élément de $\mathbb{Z}[i]$ divise un nombre entier non nul : $a+ib \in \mathbb{Z}[i]$ divise $(a+ib)(a-ib) = a^2+b^2$. Cet entier admet une décomposition en facteurs premiers $p_1^{\alpha_1} \cdots p_n^{\alpha_n}$, ce qui implique $p_1^{\alpha_1} \cdots p_n^{\alpha_n} \in (a+ib)$. Or, si a+ib est irréductible, l'idéal (a+ib) dans $\mathbb{Z}[i]$ est premier, donc il existe un k tel que $p_k \in (a+ib)$, ce qui implique que a+ib divise p_k .
- **2.** On a vu à l'exercice précédent que si p est irréductible, il s'écrit comme somme de deux carrés, ce qui donne une décomposition dans $\mathbb{Z}[i]$

$$p = a^2 + b^2 = (a + ib)(a - ib).$$

On a alors N(a+ib) = N(a-ib) et $N(a\pm ib)^2 = N(p) = p^2$, d'où $N(a\pm ib) = p$. Les éléments $a\pm ib$ sont alors irréductibles, comme tout élément de « norme » première. (Si z est de norme première q, toute décomposition z = uv donne une décomposition dans $\mathbb{Z}: q = N(u)N(v)$, qui est donc fatalement triviale. On a alors N(u) = 1 ou N(v) = 1 et, puisque les irréductibles sont exactement les éléments de norme 1, u ou v était irréductible, ce qui prouve que z est irréductible).

On a donc trouvé une décomposition de p en deux irréductibles conjugués. On vérifie aisément que si a+ib et a-ib sont associés, on a a=0, b=0 (ces deux cas sont exclus, puisque ils impliqueraient que p est un carré) ou alors $a=\pm b$. Dans ce cas, p s'écrit $p=2\cdot a^2$, ce qui implique p=2. Ainsi, la seule décomposition en produit de deux irréductibles associés est (à multiplication par un inversible près) 2=(1+i)(1-i).

3. La première question implique que les éléments irréductibles de $\mathbb{Z}[i]$ sont les éléments intervenant dans la décomposition en irréductibles des nombres premiers p. En rassemblant les questions des deux exercices, on a donc démontré que *les irréductibles de* $\mathbb{Z}[i]$ *sont les éléments associés aux nombres premiers p congrus à 3 modulo 4 ou aux entiers de Gauß a + i b de norme a* 2 + 2 *première.*