L3 – INTÉGRATION 1 – CORRIGÉ DE L'EXAMEN DU 09/01/2013

Les Exercices 1 et 4 sont indépendants entre eux et indépendants des Exercices 2 et 3. L'Exercice 3 utilise le résultat de l'Exercice 2. On pourra admettre le résultat d'une question et traiter les questions suivantes.

Exercice 1 (Intégrales à paramètre). Soit $f: [0, +\infty[\to [0, +\infty[$ une fonction borélienne. On note

$$F(x) = \int_0^{+\infty} \frac{\arctan(xf(t))}{1+t^2} \, \mathrm{d}\lambda(t).$$

(1) On observe que pour λ -presque tout $t \in]0, +\infty[$, la fonction $x \mapsto \frac{\arctan(xf(t))}{1+t^2}$ est continue sur \mathbf{R} . De plus, on a

$$\left| \frac{\arctan(xf(t))}{1+t^2} \right| \le \frac{\pi}{2(1+t^2)}, \forall x \in \mathbf{R}, \forall t > 0.$$

Par le théorème de continuité sous le signe intégral, on obtient que F est bien définie et continue sur \mathbf{R} .

(2) On note l'ensemble mesurable $B = \{t > 0 : f(t) > 0\}$. Alors on a

$$F(x) = \int_{B} \frac{\arctan(xf(t))}{1+t^2} \, \mathrm{d}\lambda(t).$$

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels tels que $\lim_n x_n = +\infty$. Pour tout $t\in B$, on a

$$\lim_{n} \frac{\arctan(x_n f(t))}{1 + t^2} = \frac{\pi}{2(1 + t^2)}.$$

De plus, on a

$$\left| \frac{\arctan(x_n f(t))}{1 + t^2} \right| \le \frac{\pi}{2(1 + t^2)}, \forall n \in \mathbf{N}, \forall t \in B.$$

Par théorème de convergence dominée, on obtient

$$\lim_{n} F(x_n) = \frac{\pi}{2} \int_{B} \frac{1}{1+t^2} \,\mathrm{d}\lambda(t).$$

Ainsi, $\lim_{x\to+\infty} F(x) = \frac{\pi}{2} \int_B \frac{1}{1+t^2} d\lambda(t)$. Lorsque f(t) > 0 pour λ -presque tout t > 0, on obtient

$$\lim_{x \to +\infty} F(x) = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{1+t^2} \, \mathrm{d}\lambda(t) = \frac{\pi^2}{4}.$$

(3) Pour tous $u, v \ge 0$, on a $(1 - uv)^2 \ge 0$ et donc $1 + u^2v^2 \ge 2uv$. Pour tous x, t > 0, on a

$$\frac{\partial}{\partial x} \left(\frac{\arctan(xf(t))}{1+t^2} \right) = \frac{f(t)}{(1+x^2f(t)^2)(1+t^2)}.$$

De plus, on a

$$\left| \frac{\partial}{\partial x} \left(\frac{\arctan(xf(t))}{1+t^2} \right) \right| \le \frac{1}{2x(1+t^2)}.$$

Par théorème de dérivation sous le signe intégral, on obtient que F est de classe C^1 sur tous les intervalles ouverts $]a, +\infty[$ avec a > 0. Ainsi F est de classe C^1 sur l'intervalle ouvert $]0, +\infty[$ et

$$F'(x) = \int_0^{+\infty} \frac{f(t)}{(1 + x^2 f(t)^2)(1 + t^2)} \, d\lambda(t).$$

(4) Supposons que F admette au point x=0 une dérivée à droite finie. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs tels que $\lim_n x_n=0$. Un simple calcul montre que

$$\frac{F(x_n) - F(0)}{x_n - 0} = \int_0^{+\infty} \frac{\arctan(x_n f(t))}{x_n (1 + t^2)} \, \mathrm{d}\lambda(t).$$

Par le lemme de Fatou, on a

$$\begin{split} \int_0^{+\infty} \frac{f(t)}{1+t^2} \, \mathrm{d}\lambda(t) &= \int_0^{+\infty} \lim_n \frac{\arctan(x_n f(t))}{x_n (1+t^2)} \, \mathrm{d}\lambda(t) \\ &= \int_0^{+\infty} \liminf_n \frac{\arctan(x_n f(t))}{x_n (1+t^2)} \, \mathrm{d}\lambda(t) \\ &\leq \lim\inf_n \int_0^{+\infty} \frac{\arctan(x_n f(t))}{x_n (1+t^2)} \, \mathrm{d}\lambda(t) \\ &\leq \liminf_n \frac{F(x_n) - F(0)}{x_n - 0} = F_d'(0). \end{split}$$

Ainsi $\int_0^{+\infty} \frac{f(t)}{1+t^2} d\lambda(t) < +\infty$ est une condition nécéssaire.

Réciproquement, si la condition $\int_0^{+\infty} \frac{f(t)}{1+t^2} d\lambda(t) < +\infty$ est satisfaite, un raisonnement analogue à celui de la question (3) montre que

$$\left| \frac{\partial}{\partial x} \left(\frac{\arctan(xf(t))}{1+t^2} \right) \right| \le \frac{f(t)}{1+t^2}.$$

Ainsi, le théorème de dérivation sous le signe intégral montre alors que F est de classe \mathbf{C}^1 sur \mathbf{R} .

Exercice 2 (Ensembles de niveaux). Soit (E, \mathcal{A}, μ) un espace mesuré. On note λ la mesure de Lebesgue sur l'espace mesurable $([0, +\infty[, \mathcal{B}([0, +\infty[)).$

Soit $\varphi: E \to [0, +\infty[$ une fonction mesurable et positive. Pour tout $t \ge 0$, on définit l'ensemble mesurable $E_t^{\varphi} = \{x \in E : \varphi(x) \ge t\}$. Le but de l'exercice est de démontrer la formule suivante :

(*)
$$\int_{E} \varphi(x) d\mu(x) = \int_{0}^{+\infty} \mu(E_{t}^{\varphi}) d\lambda(t).$$

- (1) On traite tout d'abord le cas où $\varphi: E \to [0, +\infty[$ est une fonction mesurable, positive et étagée. On écrit alors $\varphi = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$ avec $\alpha_1 < \cdots < \alpha_n$. On pose $\alpha_0 = 0$.
 - (a) Il est facile de calculer E_t^{φ} . Si $t \leq \alpha_1$, alors $E_t^{\varphi} = E$ et si $t > \alpha_n$, alors $E_t^{\varphi} = \emptyset$. Si $\alpha_1 \leq t \leq \alpha_n$, alors $E_t^{\varphi} = \bigcup_{\{i:\alpha_i \geq t\}} A_i$. On définit $B_0 = [\alpha_0, \alpha_1], \ B_1 = [\alpha_1, \alpha_2], \ldots, B_{n-1} = [\alpha_{n-1}, \alpha_n]$ et $B_n = [\alpha_n, +\infty[$. On définit aussi $\beta_0 = \mu(E), \ \beta_1 = \sum_{2 \leq i \leq n} \mu(A_i), \ldots, \beta_{n-1} = \mu(A_n)$ et $\beta_n = 0$. On en déduit donc la formule suivante :

$$\mu(E_t^{\varphi}) = \sum_{j=0}^n \beta_j \mathbf{1}_{B_j}(t).$$

Ainsi, la fonction $t\mapsto \mu(E_t^\varphi)$ est mesurable positive et étagée.

(b) D'une part, on a $\int_E \varphi(x) d\mu(x) = \sum_{i=1}^n \alpha_i \mu(A_i)$. D'autre part, on a

$$\int_0^{+\infty} \mu(E_t^{\varphi}) \, \mathrm{d}\lambda(t) = \sum_{j=0}^{n-1} \beta_j \lambda(B_j)$$

$$= \sum_{j=0}^{n-1} \sum_{i=j+1}^n \mu(A_i)(\alpha_{j+1} - \alpha_j)$$

$$= \sum_{i=1}^n \sum_{j=0}^{i-1} \mu(A_i)(\alpha_{j+1} - \alpha_j)$$

$$= \sum_{i=1}^n \mu(A_i)\alpha_i.$$

Donc la formule (*) est démontrée.

(2) Soit à présent $\varphi: E \to [0, +\infty[$ une fonction mesurable et positive quelconque. On sait qu'il existe une suite croissante $(\varphi_n)_{n \in \mathbb{N}}$ de fonctions mesurables, positives et étagées telles que $\lim_n \varphi_n = \varphi$.

On définit les fonctions mesurables, positives et étagées $\Phi_n: [0, +\infty[\to [0, +\infty[$ par $\Phi_n(t) = \mu(E_t^{\varphi_n})$. Puisque $\varphi_n \leq \varphi_{n+1}$, il est facile de voir que

$$E_t^{\varphi_n} \subset E_t^{\varphi_{n+1}} \text{ et } \bigcup_n E_t^{\varphi_n} \cup \{x \in E : \varphi(x) = t\} = E_t^{\varphi}, \forall t \geq 0.$$

En utilisant un raisonnement analogue à celui de l'Exercice 3, il existe une quantité au plus dénombrable de réels $t \geq 0$ telle que $\mu(\{x \in E : \varphi(x) = t\}) > 0$. Par propriétés de la mesure, on a $\Phi_n(t) \leq \Phi_{n+1}(t)$ pour tout $t \geq 0$ et $\sup_n \Phi_n(t) = \mu(E_t^{\varphi})$ pour Lebesque-presque tout $t \geq 0$. Comme chacune des fonctions Φ_n est mesurable et positive, il suit que la fonction $t \mapsto \mu(E_t^{\varphi})$ est mesurable et positive.

En utilisant la question précédente pour tout $n \in \mathbb{N}$ et par théorème de convergence monotone, on a

$$\int_{E} \varphi(x) \, d\mu(x) = \sup_{n} \int_{E} \varphi_{n}(x) \, d\mu(x)$$

$$= \sup_{n} \int_{0}^{+\infty} \Phi_{n}(t) \, d\lambda(t)$$

$$= \int_{0}^{+\infty} \sup_{n} \Phi_{n}(t) \, d\lambda(t)$$

$$= \int_{0}^{+\infty} \mu(E_{t}^{\varphi}) \, d\lambda(t).$$

La formule (*) est démontrée.

Exercice 3 (Théorème du Porte-Manteau). Dans cet exercice, on considère l'espace topologique \mathbf{R}^d $(d \ge 1)$ muni de sa tribu borélienne $\mathcal{B}(\mathbf{R}^d)$. Pour tout borélien B de \mathbf{R}^d , on note \overline{B} la fermeture de B, \mathring{B} l'intérieur de B et $\partial B = \overline{B} \setminus \mathring{B}$ la frontière de B.

Soit $(\mu_n)_{n\in\mathbb{N}}$ et μ des mesures de probabilités sur $(\mathbf{R}^d,\mathcal{B}(\mathbf{R}^d))$. On dit que μ_n converge étroitement vers μ si pour toute fonction continue et bornée $f:\mathbf{R}^d\to\mathbf{R}$ on a

$$\lim_{n} \int_{\mathbf{R}^d} f(x) \, \mathrm{d}\mu_n(x) = \int_{\mathbf{R}^d} f(x) \, \mathrm{d}\mu(x).$$

Le but de l'exercice est de montrer l'équivalence entre les quatre assertions suivantes :

 (\spadesuit) μ_n converge étroitement vers μ .

 (\heartsuit) Pour tout ouvert O de \mathbf{R}^d , on a

$$\liminf_{n} \mu_n(O) \ge \mu(O).$$

 (\diamondsuit) Pour tout fermé F de \mathbf{R}^d , on a

$$\limsup_{n} \mu_n(F) \le \mu(F).$$

(\clubsuit) Pour tout borélien B de \mathbf{R}^d tel que $\mu(\partial B) = 0$, on a

$$\lim_{n} \mu_n(B) = \mu(B).$$

On se propose de montrer les différentes équivalences en plusieurs étapes.

(1) On a

$$(\heartsuit) \Leftrightarrow \liminf_{n} \mu_{n}(O) \geq \mu(O), \forall O \text{ ouvert}$$

$$\Leftrightarrow 1 - \liminf_{n} \mu_{n}(O) \leq 1 - \mu(O), \forall O \text{ ouvert}$$

$$\Leftrightarrow \limsup_{n} \mu_{n}(\mathbf{R}^{d} \setminus O) \leq \mu(\mathbf{R}^{d} \setminus O), \forall O \text{ ouvert}$$

$$\Leftrightarrow \limsup_{n} \mu_{n}(F) \leq \mu(F), \forall F \text{ ferm\'e}$$

$$\Leftrightarrow (\diamondsuit).$$

(2) Soit B un borélien de \mathbf{R}^d . En utilisant (\heartsuit) pour \mathring{B} et (\diamondsuit) pour \overline{B} , on a

$$\liminf_{n} \mu_n(\mathring{B}) \geq \mu(\mathring{B})$$

$$\limsup_{n} \mu_n(\overline{B}) \leq \mu(\overline{B}).$$

Par conséquent, ceci entraîne

$$\mu(\mathring{B}) \le \liminf_{n} \mu_n(B) \le \limsup_{n} \mu_n(B) \le \mu(\overline{B}).$$

Puisque $\mu(\mathring{B}) = \mu(\overline{B})$, on a $\liminf_n \mu_n(B) = \limsup_n \mu_n(B) = \mu(B)$ et donc $\lim_n \mu_n(B) = \mu(B)$.

(3) Soit O un ouvert de \mathbf{R}^d . Pour tout $p \in \mathbf{N}$, on définit $\varphi_p(x) = (p d(x, \mathbf{R}^d \setminus O)) \wedge 1$ pour tout $x \in \mathbf{R}^d$. Il est alors immédiat de vérifier que φ_p est 1-Lipschitzienne, $0 \le \varphi_p \le \varphi_{p+1} \le \mathbf{1}_O$ pour tout $p \in \mathbf{N}$ et $\lim_p \varphi_p = \mathbf{1}_O$. Par théorème de convergence monotone pour μ , on obtient

$$\sup_{p} \int_{\mathbf{R}^d} \varphi_p(x) \, \mathrm{d}\mu(x) = \mu(O).$$

En appliquant (\spadesuit) pour tout $p \in \mathbb{N}$, on obtient

$$\lim_{n} \int_{\mathbf{R}^{d}} \varphi_{p}(x) \, \mathrm{d}\mu_{n}(x) = \int_{\mathbf{R}^{d}} \varphi_{p}(x) \, \mathrm{d}\mu(x).$$

Ceci entraîne

$$\lim_{n} \inf \mu_{n}(O) = \lim_{n} \inf \int_{\mathbf{R}^{d}} \mathbf{1}_{O}(x) \, \mathrm{d}\mu_{n}(x)
\geq \lim_{n} \inf \int_{\mathbf{R}^{d}} \varphi_{p}(x) \, \mathrm{d}\mu_{n}(x), \forall p \in \mathbf{N}
= \int_{\mathbf{R}^{d}} \varphi_{p}(x) \, \mathrm{d}\mu(x), \forall p \in \mathbf{N}.$$

Donc $\liminf_n \mu_n(O) \ge \sup_p \int_{\mathbf{R}^d} \varphi_p(x) \, \mathrm{d}\mu(x) = \mu(O).$

- (4) Dans cette question, on démontre que l'assertion (\clubsuit) entraı̂ne l'assertion (\spadesuit). Soit $f: \mathbf{R}^d \to \mathbf{R}$ une fonction continue et bornée.
 - (a) On peut décomposer toute fonction continue $f: \mathbf{R}^d \to \mathbf{R}$ comme $f = f^+ f^-$ avec $f^+ = f \wedge 0$ et $f^- = (-f) \wedge 0$. Puisque f^+ et f^- sont des fonctions continues, positives et bornées, on peut dorénavant supposer que f est continue, positive et bornée.
 - (b) Pour tout $t \geq 0$, on définit l'ensemble fermé $F_t = \{x \in \mathbf{R}^d : f(x) \geq t\}$. Il est facile de voir que $\{x \in \mathbf{R}^d : f(x) > t\} \subset \mathring{F}_t$ car $\{x \in \mathbf{R}^d : f(x) > t\}$ est ouvert. Donc $\partial F_t \subset \{x \in \mathbf{R}^d : f(x) = t\}$. Il n'y a pas de description plus précise de ∂F_t .
 - (c) On observe que les fermés ∂F_t sont deux à deux disjoints. Puisque $\mu(\mathbf{R}^d) = 1$, il suit qu'il existe un nombre fini de $t \geq 0$ tels que $\mu(\partial F_t) \geq \frac{1}{n}$. Par conséquent, il existe un nombre au plus dénombrable de $t \geq 0$ tels que $\mu(\partial F_t) > 0$. En particulier, puisqu'un ensemble dénombrable est Lebesgue-négligeable, on obtient que pour Lebesgue-presque tout $t \geq 0$,

$$\lim_{n} \mu_n(F_t) = \mu(F_t).$$

(d) Puisque f est bornée, on $0 \le f \le K$. En utilisant le résultat de l'Exercice 2 avec le théorème de convergence dominée, on obtient

$$\lim_{n} \int_{\mathbf{R}^{d}} f(x) \, \mathrm{d}\mu_{n}(x) = \lim_{n} \int_{0}^{K} \mu_{n}(F_{t}) \, \mathrm{d}\lambda(t)$$

$$= \int_{0}^{K} \lim_{n} \mu_{n}(F_{t}) \, \mathrm{d}\lambda(t)$$

$$= \int_{0}^{K} \mu(F_{t}) \, \mathrm{d}\lambda(t)$$

$$= \int_{\mathbf{R}^{d}} f(x) \, \mathrm{d}\mu(x).$$

Exercice 4 (Mesures contractantes). Soit (E, A) un espace mesurable et $T : E \to E$ une bijection telle que T et T^{-1} sont mesurables.

Soient μ et ν deux mesures de probabilités sur (E, A) qui ont les mêmes ensembles négligeables. Le but de l'exercice est de montrer que μ est contractante si et seulement si ν est contractante.

- (1) On raisonne par l'absurde et on suppose que μ est contractante alors que ν ne l'est pas. Puisque ν n'est pas contractante, il existe $A \in \mathcal{A}$ tel que $\nu(A) < 1$ et $\alpha > 0$ tel que $\nu(T^n(A)) \geq \alpha$ pour tout $n \in \mathbf{Z}$. Puisque $\nu(A) < 1$, on a $\nu(E \setminus A) > 0$ et donc $\mu(E \setminus A) > 0$ car μ et ν ont les mêmes ensembles négligeables. Puisque μ est contractante et $\mu(A) < 1$, il existe une suite $(n_k)_{k \in \mathbf{N}}$ dans \mathbf{Z} telle que $\lim_k \mu(T^{n_k}(A)) = 0$. Quite à extraire une sous-suite, on peut supposer $\mu(T^{n_k}(A)) \leq 2^{-k}$ pour tout $k \in \mathbf{N}$.
- (2) On considère à présent

$$B = \limsup_{k} T^{n_k}(A) = \bigcap_{k \in \mathbb{N}} \bigcup_{p \ge k} T^{n_p}(A) \in \mathcal{A}.$$

On pose $B_k = \bigcup_{p \geq k} T^{n_p}(A) \in \mathcal{A}$. On a $B_{k+1} \subset B_k$ pour tout $k \in \mathbb{N}$ et $B = \bigcap_{k \in \mathbb{N}} B_k$. D'une part on a $\mu(B_k) \leq \sum_{p \geq k} \mu(T^{n_p}(A)) \leq \sum_{p \geq k} 2^{-p} = 2^{-k+1}$ et d'autre part on a $\nu(B_k) \geq \alpha$ pour tout $k \in \mathbb{N}$. Puisque μ et ν sont des mesures de probabilités, il suit que $\mu(B) = \lim_k \mu(B_k) = 0$ alors que $\nu(B) = \lim_k \nu(B_k) \geq \alpha$. Ceci contradit le fait que μ et ν ont les mêmes ensembles négligeables.