TD 3 : mesure de Lebesgue

Dans toute la suite, on admet l'existence de la mesure de Lebesgue, c'est-à-dire l'existence et l'unicité d'une mesure λ sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ telle que

$$\lambda\left(\prod_{i=1}^{d} a_i, b_i\right) = (b_1 - a_1) \cdots (b_d - a_d).$$

Exercice 1.— Mesure de Lebesgue sur \mathbb{R} : vrai ou faux?

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse. On demande, suivant les cas, une preuve ou un contre-exemple.

1. Soit $(A_n)_{n\in\mathbb{N}}$ une suite décroissante de boréliens de \mathbb{R} d'intersection vide. Alors

$$\lambda(\mathbf{A}_n) \xrightarrow[n \to \infty]{} 0.$$

- 2. Soit A un borélien de \mathbb{R} d'intérieur vide. Alors $\lambda(A) = 0$.
- 3. Soit A un borélien de \mathbb{R} d'intérieur non vide. Alors $\lambda(A) > 0$.
- 4. Soit K un compact de \mathbb{R} . Alors $\lambda(K)$ est finie.

Exercice 2.— Exemple de Vitali

Soit \sim la relation d'équivalence définie sur $\mathbb R$ par $x \sim y \Leftrightarrow x-y \in \mathbb Q$. Justifier que chaque classe rencontre l'intervalle [0,1]. On forme l'ensemble V en prenant dans chaque classe d'équivalence un représentant dans [0,1]. On obtient donc une partie $V \subset [0,1]$ intersectant en un unique point chaque classe d'équivalence de \sim . Montrer que V n'est pas borélien.

Exercice 3.— Ensembles de Cantor

- (a) On définit l'ensemble triadique de Cantor K_3 de la manière suivante : $K_3^{(0)}$ est l'intervalle [0,1], $K_3^{(1)}$ est obtenu en découpant $K_3^{(0)}$ en trois intervalles de même taille et en ne gardant que les deux intervalles (fermés) extrêmes ($K_3^{(1)} = [0,1/3] \cup [2/3,1]$), $K_3^{(2)}$ est obtenu en faisant subir le même sort aux (deux) intervalles constituant $K_3^{(1)}$ ($K_3^{(2)} = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$). On construit ainsi par récurrence des compacts $K_3^{(n)}$ formés de 2^n intervalles. Ces compacts sont emboîtés et on pose $K_3 = \bigcap_{n \in \mathbb{N}} K_3^{(n)}$. Calculer la mesure de Lebesgue de l'ensemble triadique de Cantor.
- (b) On généralise la construction précédente : pour n'importe quelle suite de nombres $\lambda_n \in]0,1[$, on définit les compacts $K^{(n)}$ par récurrence en partant de $K^{(0)} = [0,1]$ et en passant de $K^{(n)}$ à $K^{(n+1)}$ en ôtant à chacun des 2^n intervalles I formant $K^{(n)}$ l'intervalle ouvert central de longueur $\lambda_n \cdot \lambda(I)$. On pose enfin $K = \bigcap_{n \in \mathbb{N}} K_n$. L'exemple de la question précédente correspond à la suite constante $\forall n, \lambda_n = 1/3$. Montrer que pour tout $\alpha \in [0,1[$, on peut construire par ce procédé un compact de mesure α .

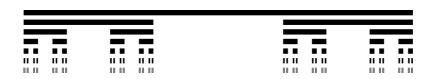


FIGURE 1 – K₃ : premières étapes de construction (source : wikipédia)

(c) Montrer que les compacts précédents sont homéomorphes à l'espace $\{0,1\}^{\mathbb{N}}$ de l'exercice 6 du TD 1.

Exercice 4.— Fonctions de répartition

Soit μ une mesure sur $(\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+))$ finie sur les compacts.

(a) Montrer que la fonction

$$F: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R}_+ \\ x & \mapsto & \mu\left([0, x]\right) \end{array}$$

est bien définie, croissante et continue à gauche. On dit que F est la fonction de répartition de μ .

- (b) Donner une condition nécessaire et suffisante pour que F soit continue.
- (c) Donner une condition nécessaire et suffisante pour que F soit un homéomorphisme de \mathbb{R}_+ sur lui-même.
- (d) Soit $F : \mathbb{R}_+ \to \mathbb{R}_+$ une fonction croissante et continue à gauche et telle que F(0) = 0. Montrer qu'il existe une unique mesure μ sur $(\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+))$ dont F soit la fonction de répartition.

Exercice 5.— Propriétés d'invariance de la mesure de Lebesgue

- (a) Montrer que la mesure de Lebesgue λ sur \mathbb{R}^d est invariante par translation.
- (b) Soit μ une mesure définie sur $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$ invariante par translation et telle que $\mu\left([0,1]^d\right) = r < \infty$. Montrer que $\mu = r\lambda$.
- (c) Soit E un borélien de \mathbb{R}^d et $A:\mathbb{R}^d\to\mathbb{R}^d$ un endomorphisme. Montrer que

$$\lambda(A(E)) = |\det A| \cdot \lambda(E).$$

- (d) On note $E = C([0,1], \mathbb{R})$ l'espace des fonctions continues de $[0,1] \to \mathbb{R}$, muni de la norme $||f||_{\infty} = \max_{[0,1]} |f|$. Montrer qu'il n'existe pas sur E de mesure μ non nulle vérifiant les propriétés suivantes :
 - μ est invariante par translation;
 - Tout point $p \in E$ admet un voisinage de μ -mesure finie.