M1 Mathématiques Avancées, année 2010-2011

Partiel de Surfaces de Riemann

30 mars 2011, 8h-10h

L'usage des notes de cours, ainsi que des énoncés et notes de TD, est autorisé, à l'exclusion de tous autres documents. Les exercices sont indépendants.

- 1 (i) Montrer que les biholomorphismes de $\mathbb{P}^1(\mathbb{C})$ sont simplement transitifs sur les triplets (z_1, z_2, z_3) de points distincts : si (z_1, z_2, z_3) et (z'_1, z'_2, z'_3) sont deux tels triplets, il existe un unique biholomorphisme φ tel que $\varphi(z_i) = z'_i$, i = 1, 2, 3.
 - (ii) Montrer que les biholomorphismes de Δ sont simplement transitifs sur les couples (z_1, z_2) tels que $f(z_1, z_2) := \left|\frac{z_1 z_2}{1 \overline{z}_1 z_2}\right|$ est fixé non nul : si (z_1, z_2) et (z_1', z_2') sont deux couples tels que $f(z_1, z_2) = f(z_1', z_2') \neq 0$, il existe un unique biholomorphisme φ tel que $\varphi(z_i) = z_i'$, i = 1, 2. *Question subsidiaire : interpréter $f(z_1, z_2)$.
- **2** (i) Soit $f: \overline{\mathbb{H}} = \{z \in \mathbb{C} \mid \Im z \geq 0\} \to \mathbb{R}$ continue, harmonique sur \mathbb{H} et bornée sur \mathbb{R} . Est-elle bornée sur \mathbb{H} ?
 - (ii) On suppose de plus que f est bornée sur \mathbb{H} . Montrer que si $x + iy \in \mathbb{H}$ on a

$$f(x+iy) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{ydt}{(x-t)^2 + y^2}.$$

Indication. Traiter d'abord le cas où f(z) a une limite quand $|z| \to \infty$. Utiliser le biholomorphisme $z \mapsto \frac{z-i}{z+i}$ de \mathbb{H} sur Δ et la formule de Poisson $g(z) = \frac{1}{2\pi i} \int_{\partial \Delta} g(z) \frac{1-|\zeta|^2}{|z-\zeta|^2} \frac{d\zeta}{\zeta}$ [et non $g(\zeta)$ comme indiqué malencontreusement le jour du partiel], $z \in \Delta$, pour g continue sur $\overline{\Delta}$ et harmonique sur Δ .

- 3 On appelle anneau rond une partie de \mathbb{C} de la forme $A_{r,R} = \Delta_R \setminus \overline{\Delta}_r$, $1 < r < R < \infty$, et anneau un ouvert $A \subset X$ d'une surface de Riemann homéomorphe à un anneau rond, ou ce qui revient au même à \mathbb{C}^* ou à Δ^* .
 - (i) Montrer que tout anneau $A \subset X$ est biholomorphe à \mathbb{C}^* ou \mathbb{H}/Γ , où Γ est un sous-groupe de Bihol(\mathbb{H}) agissant proprement et librement, et que ces deux cas sont exclusifs l'un de l'autre.
 - (ii) On suppose $A \approx \mathbb{H}/\Gamma$. On admettra que Γ est engendré par un élément. En déduire que \mathbb{A} est biholomorphe à Δ^* ou à un anneau rond.
- (iii) Si $A \subset \mathbb{C}$ est un anneau dont le complémentaire a au moins deux points, montrer qu'il n'est pas biholomorphe à \mathbb{C}^* . On pourra utiliser le petit théorème de Picard (vu en TD) : toute fonction entière $f \in \mathcal{O}(\mathbb{C})$ qui évite deux points est constante.
- (iv) A quelle condition deux anneaux ronds $A_{r,R}$ et $A_{s,S}$ sont-ils biholomorphes?
- **4** (i) Soit $n \in \mathbb{N}^*$ fixé. On définit $Y_n = \{(x,y) \in \mathbb{C}^2 \mid x^n + y^n = 1\}$ [«courbe de Fermat»]. Montrer que Y_n est connexe, et est naturellement munie d'une structure de surface de Riemann. Pour chaque point $(x,y) \in Y_n$, exhiber une uniformisante en ce point.

- (ii) Identifier Y_1, Y_2 .
- (iii) On pose $Y_n(\varepsilon) = \{(x,y) \in Y_n \mid |x| > \varepsilon^{-1}\}$. Montrer que pour $\varepsilon > 0$ assez petit, $Y_n(\varepsilon)$ a n composantes connexes $C_1(\varepsilon), \dots, C_n(\varepsilon)$, et que chacune est biholomorphe à $\mathbb{C} \setminus \overline{\Delta_{\varepsilon^{-1}}}$ [et non Δ_{ε} comme indiqué le jour du partiel]via la projection $(x,y) \mapsto x^{-1}$. En déduire qu'il existe une surface de Riemann compacte X_n telle que $Y_n = X_n \setminus \{p_1, \dots, p_n\}$, où les p_i sont distincts et la fonction ζ_i qui vaut $\frac{1}{x}$ sur $C_i(\varepsilon)$ et 0 en p_i est une uniformisante.
 - Si l'on préfère, on pourra considérer \mathbb{C}^2 comme contenu dans $\mathbb{P}^2(\mathbb{C})$ et poser $X_n = \overline{Y}_n$.
- (iv) Identifier X_1, X_2 .
- (v) Montrer que $x:Y_n\to\mathbb{C}$ et $y:Y_n\to\mathbb{C}$ sont méromorphes sur X_n . Donner leurs pôles et leurs degrés.
- (vi) Montrer que $\mathcal{M}(X_n) = \mathbb{C}(x,y)$. En fait cette question est trop dure, la preuve est proche de celle donnée dans le cours pour le fait que toute fonction méromorphe est algébrique de degré borné sur $\mathbb{C}(f)$.
 - On suppose maintenant $n \geq 3$.
- (vii) Montrer que les formes $\omega_{i,j} = x^i y^j dx$, $0 \le i \le n-3$, $1-n \le j \le -2-i$, sont des différentielles holomorphes c'est-à-dire appartiennent à Ω_X^1 . Montrer qu'elles sont linéairement indépendantes.
- (viii) Si n=3, montrer que $\omega_{0,-2}=y^{-2}dx$ est non singulière.