\mathbf{V}

Déterminants

Groupe symétrique

Signature

Autocorrection A.

- 1. Calculer la décomposition en cycles à supports disjoints et la signature des permutations suivantes de $\mathfrak{S}(9)$:
 - (i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 4 & 9 & 6 & 2 & 8 & 7 & 1 & 3 \end{pmatrix}$;
- (iii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 7 & 6 & 8 & 3 & 5 & 4 & 9 & 2 \end{pmatrix}$; (iv) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 5 & 4 & 3 & 6 & 7 & 9 & 8 \end{pmatrix}$.
- (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 1 & 6 & 3 & 4 & 5 & 8 & 2 \end{pmatrix}$;
- 2. Sans calculer les décompositions en cycles disjoints, déterminer les signatures des permutations suivantes de $\mathfrak{S}(9)$:
 - (i) (12)(123)(12);

(iii) (12)(2465)(137)(254)(3561)(25)(146);

(ii) (23456789);

(iv) (123)(45)(16789)(159).

Exercice 1._

Soit $n \ge 1$.

1. Calculer les signatures des éléments de $\mathfrak{S}(n)$ suivants :

$$(i) \ \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & n-1 & n-2 & \cdots & 2 & 1 \end{pmatrix}; \qquad (ii) \ \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{pmatrix}.$$

(ii)
$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{pmatrix}$$

2. Calculer les signatures des éléments de $\mathfrak{S}(2n)$ suivants :

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & 2n-3 & 2n-2 & 2n-1 & 2n \\ 2 & 1 & 4 & 3 & \cdots & 2n-2 & 2n-3 & 2n & 2n-1 \end{pmatrix}$$
;

(ii)
$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n & n+1 & n+2 & \cdots & 2n-2 & 2n-1 & 2n \\ 1 & 3 & 5 & \cdots & 2n-3 & 2n-1 & 2 & 4 & \cdots & 2n-4 & 2n-2 & 2n \end{pmatrix}$$

Exercice 2._

Pour $n \ge 5$, on considère la permutation

$$\sigma = (123) \circ (234) \circ (345) \circ \cdots \circ (n-4n-3n-2) \circ (n-3n-2n-1) \circ (n-2n-1n).$$

Déterminer la décomposition en cycles disjoints de σ , son ordre et sa signature.

Exercice 3._

Montrer qu'il existe un morphisme injectif $\mathfrak{S}(\mathfrak{n}) \to \mathfrak{A}(\mathfrak{n}+2)$.

Exercice 4^+ (Abélianisation de $\mathfrak{S}(n)$).

ହ

Soit $n\geqslant 1$, A un groupe abélien (noté multiplicativement) et $\phi:\mathfrak{S}(n)\to A$ un morphisme de groupes.

Montrer qu'il existe un morphisme de groupes $\iota : \{\pm 1\} \to A$ tel que $\phi = \iota \circ \epsilon$.

Exercice 5⁺.__

Pour tout $\sigma \in \mathfrak{A}(\mathfrak{n})$, on note

$$C_{\mathfrak{S}}(\sigma) = \left\{\pi \circ \sigma \circ \pi^{-1} \ \middle| \ \pi \in \mathfrak{S}(n) \right\} \qquad \text{et} \qquad C_{\mathfrak{A}}(\sigma) = \left\{\pi \circ \sigma \circ \pi^{-1} \ \middle| \ \pi \in \mathfrak{A}(n) \right\}.$$

Montrer que pour tout $\sigma \in \mathfrak{A}(\mathfrak{n})$, on a soit $C_{\mathfrak{S}}(\sigma) = C_{\mathfrak{A}}(\sigma)$, soit il existe une permutation $\sigma' \in \mathfrak{A}(\mathfrak{n})$ telle que $C_{\mathfrak{S}}(\sigma) = C_{\mathfrak{A}}(\sigma) \sqcup C_{\mathfrak{A}}(\sigma')$.

Théorie des groupes

Exercice 6.

Déterminer les permutations $\sigma \in \mathfrak{S}(6)$ commutant à (123)(456).

Exercice 7.__

Déterminer les permutations de $\mathfrak{S}(n)$ commutant à $(1234 \cdots n)$.

Exercice 8⁺.__

Montrer que le sous-groupe de $\mathfrak{S}(8)$ engendré par (123)(567) et (12)(34)(56)(78) est de cardinal 12.

Evercice 9

~

Soit $n \ge 3$. Montrer que l'identité est le seul élément $\sigma \in \mathfrak{S}(n)$ tel que $\forall \pi \in \mathfrak{S}(n), \pi \circ \sigma = \sigma \circ \pi$.

Exercice 10⁺.

- 1. Montrer que si γ et $\delta \in \mathfrak{S}(\mathfrak{n})$ sont deux cycles qui commutent, on a $supp(\gamma) = supp(\delta)$ ou $supp(\gamma) \cap supp(\delta) = \varnothing$.
- 2. Montrer que si $\gamma \in \mathfrak{S}(\mathfrak{n})$ est un \mathfrak{n} -cycle, les seules permutations commutant avec γ sont les éléments du sous-groupe engendré $\langle \gamma \rangle$.

Exercice 11.____

- 1. Étant donné un élément $\sigma \in \mathfrak{S}(\mathfrak{n})$, déterminer son ordre en fonction de sa décomposition en cycles disjoints.
- 2. Soit $\sigma \in \mathfrak{S}(10)$ d'ordre 14. Calculer $\varepsilon(\sigma)$.
- 3. Déterminer l'ordre maximal d'un élément de $\mathfrak{S}(10)$.

Exercice 12⁺.___

Pour tout $i \in [1, n-1]$, on note $\tau_i = (i i + 1)$.

- 1. Montrer que les permutations $\tau_1, \ldots, \tau_{n-1}$ engendrent $\mathfrak{S}(n)$.
- 2. Montrer qu'une famille formée de k < n-1 transpositions n'engendre pas $\mathfrak{S}(n)$.

Excession	1	2+	
Exercic	ce i	3 '	_

On note $\gamma = (1 \ 2 \ 3 \ \cdots \ n) \in \mathfrak{S}(n)$.

- 1. Montrer que γ et (1 2) engendrent $\mathfrak{S}(\mathfrak{n})$.
- 2. Plus généralement, donner une condition nécessaire et suffisante portant sur une transposition τ pour que γ et τ engendrent $\mathfrak{S}(\mathfrak{n})$.

Exercice 14⁺⁺.____

Soit $n \ge 3$. Montrer que le groupe alterné $\mathfrak{A}(n)$ est engendré par les 3-cycles.

Exercice 15.

Peut-on trouver une suite $(\tau_i)_{i=1}^{n!-1}$ de transpositions telle que

$$\mathfrak{S}(\mathfrak{n}) = \left\{ id_{\llbracket 1,\mathfrak{n} \rrbracket}, \tau_1, \tau_2 \circ \tau_1, \tau_3 \circ \tau_2 \circ \tau_1, \ldots, \tau_{\mathfrak{n}!-1} \circ \tau_{\mathfrak{n}!-2} \circ \cdots \circ \tau_3 \circ \tau_2 \circ \tau_1 \right\} \ ?$$

On considère le sous-groupe $G\subseteq\mathfrak{S}(\mathfrak{n})$ constitué des permutations σ telles que $\sigma(1)=1$.

Montrer que G est un sous-groupe maximal de $\mathfrak{S}(\mathfrak{n})$, c'est-à-dire qu'il n'existe pas de sous-groupe H de $\mathfrak{S}(\mathfrak{n})$ tel que $G \subsetneq H \subsetneq \mathfrak{S}(\mathfrak{n})$.

Exercice 17⁺.__

Soit $G \subseteq \mathfrak{S}(n)$ abélien tel que $\forall 1 \leqslant i, j \leqslant n, \exists \sigma \in G : \sigma(i) = j$. Montrer que |G| = n.

Exercice 18⁺⁺.______

- 1. Montrer que $GL_2(\mathbb{F}_2)$ est isomorphe à $\mathfrak{S}(3)$.
- 2. Construire un morphisme surjectif $GL_2(\mathbb{F}_3) \to \mathfrak{S}(4)$ dont le noyau est $\{\pm I_2\}$.

Multilinéarité

Exercice 19.

Soit $A \in M_n(\mathbb{R})$ une matrice dont tous les coefficients appartiennent à $\{\pm 1\}$.

Montrer que dét A est un entier divisible par 2^{n-1} .

Exercice 20⁺.__

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Montrer que

$$\phi: \begin{cases} E \times \dots \times E \to & K \\ (\nu_1, \dots, \nu_n) \mapsto \text{d\'et} \left(u(x_1), x_2, \dots, x_n \right) + \dots + \text{d\'et} \left(x_1, x_2, \dots, u(x_n) \right). \end{cases}$$

Montrer $\varphi = tr(\mathfrak{u})$ dét.

Exercice 21⁺⁺.__

Soit E un espace vectoriel de dimension n. Pour tout $p \in \mathbb{N}$, on note $\Lambda^p E^*$ l'ensemble des applications p-linéaires alternées $\underbrace{E \times \cdots \times E}_{p \text{ facteurs}} \to K$.

Montrer que $\Lambda^p E^*$ est un espace vectoriel et déterminer sa dimension.

Calcul de déterminants

Autocorrection B.

 \mathbf{V}

Calculer les déterminants des matrices suivantes, où $a, b, c, d, a_1, \ldots, a_n \in \mathbb{C}$ sont des paramètres.

$$(i) \left| \begin{array}{cccc} 1 & 1 & 1 \\ \alpha & b & c \\ b+c & c+\alpha & \alpha+b \end{array} \right|;$$

(iv)
$$\begin{vmatrix} a^2 & b^2 & c^2 & d^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 & (d+1)^2 \\ (a+2)^2 & (b+2)^2 & (c+2)^2 & (d+2)^2 \\ (a+3)^2 & (b+3)^2 & (c+3)^2 & (d+3)^2 \end{vmatrix};$$

(ii)
$$\begin{vmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{vmatrix};$$

(v)
$$\det \left(\sum_{i=1}^{n} a_i E_{i,n+1-i} \right)$$
;

(iii)
$$\begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix};$$

$$(vi) \ \ D_n = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{vmatrix} \quad (matrice \ n \times n).$$

Exercice 22._

Calculer les déterminants $n \times n$ suivants (a, x, y et z désignent des paramètres réels).

(i)
$$\begin{vmatrix} 1+x^2 & -x & 0 & \dots & 0 \\ -x & 1+x^2 & -x & \dots & 0 \\ 0 & -x & 1+x^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1+x^2 \end{vmatrix};$$
 (iii)
$$\begin{vmatrix} a & x & x & \dots & x \\ y & z & 0 & \dots & 0 \\ y & 0 & z & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y & 0 & 0 & \dots & z \end{vmatrix};$$

(iii)
$$\begin{vmatrix} a & x & x & \dots & x \\ y & z & 0 & \dots & 0 \\ y & 0 & z & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y & 0 & 0 & \dots & z \end{vmatrix}$$

(ii)
$$\begin{vmatrix} 1 & n & n & \dots & n \\ n & 2 & n & \dots & n \\ n & n & 3 & \dots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \dots & n \end{vmatrix} ;$$

$$(iv) \begin{vmatrix} S_1 & S_1 & S_1 & \cdots & S_1 \\ S_1 & S_2 & S_2 & \cdots & S_2 \\ S_1 & S_2 & S_3 & \cdots & S_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_1 & S_2 & S_3 & \cdots & S_n \end{vmatrix}, \text{ où } S_n = \sum_{i=1}^n i.$$

Calculer les déterminants $n \times n$ suivants (a désigne un paramètre réel).

(i)
$$\det \left(a^{\max(i,j)}\right)_{1\leqslant i,j\leqslant n}$$
;

(iii)
$$\det \left({i+j-2 \choose i-1} \right)_{1 \le i,j \le n}$$
;

(ii)
$$d\acute{e}t \left({i \choose j-1} \right)_{1 \le i,j \le n}$$
;

$$\text{(iv) } \text{ d\'et } (P(i+j-1))_{1\leqslant i,j\leqslant n'} \text{ o\`u } P \in \mathbb{R}_{n-2}[X].$$

Exercice 24.____

Soit $n \in \mathbb{N}$ et $J = (1)_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$.

1. Montrer que J est semblable à n $E_{1,1}$.

2. En déduire la valeur du déterminant $\begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix}$

Exercice 25⁺ (Déterminants circulants)._

Dans tout l'exercice, on fixe $n \ge 2$ et $\zeta = \exp\left(i\frac{2\pi}{n}\right)$.

 $1. \ \mbox{On note } C = E_{1,n} + \sum_{i=1}^{n-1} E_{j+1,j} \in M_n(\mathbb{C}).$

Reconnaître une matrice de permutation et en déduire que $C^n = I_n$.

- 2. Montrer que pour tout $\omega \in \mathbb{U}_n$, l'espace vectoriel $\{X \in \mathbb{C}^n \mid CX = \omega X\}$ est une droite, et en déduire que C est semblable à la matrice diag $(1, \zeta, \dots, \zeta^{n-1})$.
- 3. En déduire que, pour tous $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$, on a

$$\begin{vmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \cdots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_0 & a_1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} \left(a_0 + \zeta^j a_1 + \cdots + \zeta^{j(n-1)} a_{n-1} \right).$$

Exercice 26⁺ (Complément de Schur). Soit $A,B,C,D\in M_n(K)$ et $M=\begin{pmatrix}A&B\\C&D\end{pmatrix}\in M_{2n}(K)$.

- 1. On suppose A inversible. Montrer $d\acute{e}t(M) = d\acute{e}t(A) \ d\acute{e}t(D CA^{-1}B)$.
- 2. On suppose en outre que A et C commutent. Montrer que $d\acute{e}t(M) = d\acute{e}t(AD BC)$.

Exercice 27⁺⁺ (Déterminant de Smith).

Soit $A \in M_n(\mathbb{R})$ la matrice $n \times n$ telle que, pour tous indices $i, j \in [1, n]$, $[A]_{i,j}$ est le nombre de diviseurs communs à i et j. Calculer dét A.

Exercice 28⁺⁺ (Déterminant de Cauchy).____

Ŷ

Soit a_1, \ldots, a_n et $b_1, \ldots, b_n \in K$ tels que $\forall i, j \in [1, n], a_i + b_j \neq 0$.

Calculer le déterminant de $\left(\frac{1}{a_i + b_i}\right)_{1 \le i \le n}$.

Exercice 29⁺⁺. X

Soit $x_1, ..., x_n \in K$ et $k \in [0, n]$. Calculer $\begin{bmatrix} 1 & x_1 & \cdots & x_1^{k-1} & x_1^{k+1} & \cdots & x_1^n \\ 1 & x_2 & \cdots & x_2^{k-1} & x_2^{k+1} & \cdots & x_2^n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1 & \cdots & x_n^{k-1} & x_n^{k+1} & \cdots & x_n^n \end{bmatrix}$

Exercice 30.

Soit E un espace vectoriel de dimension n et $s \in \mathcal{L}(E)$ une symétrie.

Déterminer dét(s) en fonction de la dimension de l'espace propre $E_1(s)$.

Déterminants et polynômes

Exercice 31.

On considère l'endomorphisme $\varphi : P \mapsto P(1-X)$ de $\mathbb{R}_n[X]$. Calculer tr φ et dét φ .

Exercice 32.

Soit $E = \{x \mapsto P(x)e^x \mid P \in \mathbb{R}_n[X]\}$. Calculer le déterminant de l'endomorphisme de dérivation sur E.

Exercice 33⁺.____

Soit $n \geqslant 2$ et $P = X^n - X + 1 \in \mathbb{R}[X]$.

- 1. Montrer que P est simplement scindé dans \mathbb{C} . On note z_1, \ldots, z_n ses racines.
- 2. Calculer le déterminant

$$\begin{vmatrix} 1+z_1 & 1 & \cdots & 1 \\ 1 & 1+z_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+z_n \end{vmatrix}.$$

Exercice 34.

- 1. Soit x_1, \ldots, x_n des réels et (P_0, \ldots, P_{n-1}) une famille échelonnée de polynômes. Calculer le déterminant dét $(P_{j-1}(x_i))_{1 \le i,j \le n}$ en fonction du déterminant de Vandermonde $V(x_1, \ldots, x_n)$.
- $\text{2. Calculer} \begin{vmatrix} 1 & \cos\theta_1 & \cos2\theta_1 & \cdots & \cos\left((n-1)\theta_1\right) \\ 1 & \cos\theta_2 & \cos2\theta_2 & \cdots & \cos\left((n-1)\theta_2\right) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cos\theta_n & \cos2\theta_n & \cdots & \cos\left((n-1)\theta_n\right) \end{vmatrix}.$

Exercice 35._

Soit $x_0, \ldots, x_n \in \mathbb{Z}$ des entiers distincts.

1. Soit $P=\sum_{i=0}^n \alpha_i X^i \in \mathbb{R}_n[X].$ Trouver $M \in M_{n+1}(\mathbb{Z})$ telle que

$$\begin{pmatrix} P(x_0) \\ P(x_1) \\ \vdots \\ P(x_n) \end{pmatrix} = M \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

2. En déduire l'existence d'un entier $d \in \mathbb{N}^*$ tel que, quel que soit $P \in \mathbb{R}_n[X]$,

$$P(\alpha_0), P(\alpha_1), \dots, P(\alpha_n) \in \mathbb{Z} \Rightarrow dP \in \mathbb{Z}[X].$$

3. Le résultat précédent reste-t-il vrai si l'on remplace $\mathbb{R}_n[X]$ par $\mathbb{R}_{n+1}[X]$?

Rang et perturbation du déterminant

Exercice 36.__

S

Soit A, B \in M_n(\mathbb{R}).

- 1. Montrer que la fonction $t \mapsto d\acute{e}t(A + tB)$ est polynomiale, de degré \leqslant rg B.
- 2. Montrer que la fonction $t\mapsto d\acute{e}t(t\,I_n-A)$ est polynomiale et déterminer son degré et ses racines.
- 3. Trouver une suite de matrices inversibles $(A_n)_{n\in\mathbb{N}}$ telle que $A_n\xrightarrow[n\to+\infty]{}A$ (où la convergence signifie que, pour tous $i,j\in [1,n]$, $[A_n]_{i,j}\xrightarrow[n\to+\infty]{}[A]_{i,j}$).

Soit $A, B \in M_n(\mathbb{R})$, avec B de rang 1. Montrer que $d\acute{e}t((A+B)(A-B)) \leqslant (d\acute{e}t\,A)^2$.

Exercice 38.

- 1. Soit $A \in M_{2n+1}(\mathbb{R})$ antisymétrique. Montrer que dét A = 0.
- 2. Soit $A \in M_{2n}(\mathbb{R})$ antisymétrique. Montrer que le déterminant de A ne change pas si on ajoute le même nombre à tous les éléments de A.
- 3. Soit $A \in M_{2n}(\mathbb{R})$ telle que $\forall i, [A]_{i,i} = 0$ et $\forall i \neq j, [A]_{i,j} \in \{\pm 1\}$. Montrer que A est inversible.
- 4. On dispose de (2n + 1) petits cailloux tels que, quel que soit le caillou enlevé, les 2n restants peuvent se répartir en deux tas de n cailloux de même masse totale. Montrer que tous les petits cailloux ont la même masse.

Exercice 39.

Soit $n\geqslant 1.$ Montrer qu'il existe $J\in M_n(\mathbb{R})$ telle que $J^2=-I_n$ si et seulement si n est pair.

Exercice 40⁺ (Déterminant de Hürwitz et théorème de De Bruijn-Erdős).

- 1. Soit $a, b, r_1, \ldots, r_n \in \mathbb{R}$. Calculer $\begin{vmatrix} r_1 & a & a & \cdots & a \\ b & r_2 & a & \cdots & a \\ b & b & r_3 & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & r_n \end{vmatrix}$
- $\text{2. En d\'eduire que} \begin{pmatrix} r_1 & 1 & 1 & \cdots & 1 \\ 1 & r_2 & 1 & \cdots & 1 \\ 1 & 1 & r_3 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & r_n \end{pmatrix} \text{ est inversible d\`es que } r_i > 1.$
- 3. En déduire que n points non alignés du plan définissent au moins n droites.

Mélange

Exercice 41.__

Soit $A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{R})$ telle que

- $\forall i \in [1, n], a_{i,i} \neq 0$;
- $\forall i, j \in [1, n], a_{i,j} \neq 0 \Rightarrow a_{j,i} = 0$;
- $\forall i, j, k \in [1, n], (a_{i,j} \neq 0 \text{ et } a_{j,k} \neq 0) \Rightarrow a_{i,k} \neq 0.$

Montrer que A est inversible.

Exercice 42.

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I. À quelle condition a-t-on

$$\forall x_1 < x_2 < x_3, \begin{vmatrix} x_1 & f(x_1) & 1 \\ x_2 & f(x_2) & 1 \\ x_3 & f(x_3) & 1 \end{vmatrix} \geqslant 0$$
?

Exercice 43⁺.___ Soit $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$. $\text{Montrer que } (f_1, \dots, f_n) \text{ est libre si et seulement s'il existe } x_1, \dots, x_n \in \mathbb{R} \text{ tels que dét } \big(f_i(x_j)\big)_{1 \leqslant i,j \leqslant n} \neq 0.$ Exercice 44._ Exercice 45⁺.__ Soit A, B \in M₂(\mathbb{Z}). On suppose que, pour tout k \in [0, 4], la matrice A + kB est inversible, d'inverse appartenant à $M_2(\mathbb{Z})$. Montrer que A+5B est inversible, d'inverse appartenant à $M_2(\mathbb{Z})$. Exercice 46. Soit $n \in \mathbb{N}^*$. 1. Existe-t-il une fonction $f : \mathbb{R}^2 \to \mathbb{R}$ telle que $\forall A, B \in M_n(\mathbb{R}), d\acute{e}t(A+B) = f(d\acute{e}t A, d\acute{e}t B)$? 2. Quelles sont les matrices $A \in M_n(\mathbb{R})$ telles que $\forall B \in M_n(\mathbb{R}), d\acute{e}t(A+B) = d\acute{e}t(A) + d\acute{e}t(B)$? Soit $A \in M_n(K)$. Montrer que $\operatorname{rg} \operatorname{com}(A) \in \{0,1,n\}$, en précisant dans quels cas chacune des alternatives advient. Exercice 48⁺. _X**₽**♥ Soit $A, B \in M_n(\mathbb{R})$. Montrer que $\begin{vmatrix} A & B \\ -B & A \end{vmatrix} \geqslant 0$. Exercice 49⁺ (Formule de Cauchy-Binet).____ $\text{D\'{e}montrer que si } P \in M_{\mathfrak{n},\mathfrak{p}}(K) \text{ et } Q \in M_{\mathfrak{p},\mathfrak{n}}(K) \text{, avec } \mathfrak{n} \leqslant \mathfrak{p} \text{, on a } \text{d\'{e}t}(PQ) = \sum \text{d\'{e}t}\left(P_I\right) \text{d\'{e}t}\left(Q_I\right) \text{, o\`{u}}$ la somme porte sur les parties $I \in \mathcal{P}_n([1,p])$ et où P_I (resp. Q_I) est la matrice carrée d'ordre r obtenue en ne gardant que les colonnes de P (resp. les lignes de Q) dont l'indice appartient à I. Que peut-on dire dans le cas n > p? Exercice 50⁺ (Lemme de descente de la similitude). $Soit \ A, B \in M_n(\mathbb{R}) \ telles \ que \ \exists P \in GL_n(\mathbb{C}) : B = PAP^{-1}. \ Montrer \ \exists P \in GL_n(\mathbb{R}) : B = PAP^{-1}.$ Exercice 51⁺⁺⁺._____ Ulm 1. Donner des réels a_1, a_2, \dots, a_{n^2} distincts tels que toute matrice possédant ces coefficients soit inversible. 2. Montrer que l'on peut choisir ces coefficients dans [1, 2]. Exercice 52⁺⁺⁺.____ Soit $n\geqslant 2$ et $A,B\in M_n(\mathbb{R}).$ Soit $(t_i)_{i=0}^n$ une famille de n+1 nombres distincts. Montrer que les assertions suivantes sont équivalentes.

(ii) Il existe deux sous-espaces vectoriels V,W de \mathbb{R}^n tels que dim $V>\dim W$ et $\begin{cases} A[V]\subseteq W\\ B[V]\subset W \end{cases}$.

(i) Pour tout $i \in [0, n]$, $d\acute{e}t(A + t_i B) = 0$.