\mathbf{V}

Calculus

Fonctions usuelles

Exponentielle et logarithme

Autocorrection A.

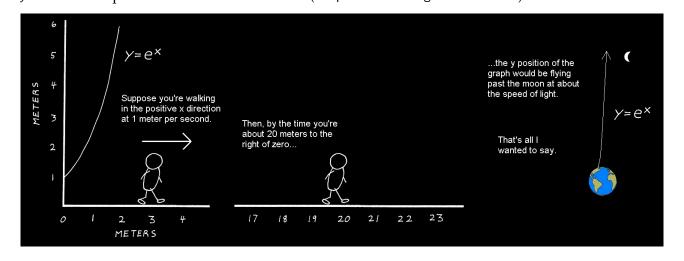
Déterminer pour quels valeurs de x l'expression $x \frac{\ln(\ln x)}{\ln x}$ a un sens, et simplifier l'expression.

Autocorrection B.

✓

Résoudre l'équation $x^x = x^2$, d'inconnue $x \in \mathbb{R}_+^*$.

Exercice 1.Justifier ce strip du webcomic *Abstruse Goose* (http://abstrusegoose.com/218).



Exercice 2.

Trouver tous les $a \in \mathbb{R}_+^*$ tels que $\forall x \in \mathbb{R}, a^x \geqslant x+1$.

Exercice 3.

Le plus grand nombre premier connu est $2^{136279841} - 1$ (il a été découvert le 21 octobre 2024 par le projet *Great Internet Mersenne Prime Search*). Combien y a-t-il de chiffres dans son écriture décimale?

Existe-t-il un entier n tel que $30^{4^{1777}}$ et 2^n aient le même nombre de chiffres?

Exercice 5. Résoudre l'équation $2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$.

Exercice 6⁺.__

0

Résoudre les deux systèmes suivants (a désigne un paramètre réel).

(i)
$$\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

(ii)
$$\begin{cases} e^x e^{2y} = a \\ 2xy = 1 \end{cases}$$

Exercice 7⁺.

Déterminer les couples $(x, y) \in (\mathbb{R}_+^*)^2$ tels que $\begin{cases} 2 \ln x - 3 \ln y &= \ln 2 \\ x - y &= 2. \end{cases}$

Exercice 8._

Déterminer les $x \in]1, +\infty[$ tels que $\ln(x-1) + \ln(x+1) < 2 \ln x - 1.$

Fonctions hyperboliques

Exercice 9.__

1. Soit x et $y \in \mathbb{R}$. Montrer

$$ch(x + y) = chx chy + shx shy$$
 et $sh(x + y) = chx shy + shx chy$.

2. (a) Donner une formule pour th(x + y).

(b) Montrer
$$\forall a, b \in]-1, 1[, \frac{a+b}{1+ab} \in]-1, 1[.$$

Exercice 10._

Montrer $\forall p \in \mathbb{N}, \forall x \in \mathbb{R}, (ch x + sh x)^p = ch(px) + sh(px).$

Exercice 11.__

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Simplifier $2^n \prod_{k=1}^n \operatorname{ch} \frac{x}{2^k}$.

Exercice 12.

Soit $a, b \in \mathbb{R}$. Résoudre l'équation $a \, \operatorname{ch} x + b \, \operatorname{sh} x = 0$.

Exercice 13.

Soit $n \in \mathbb{N}^*$ et $x, y \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} ch(x + ky)$ et $\sum_{k=0}^{n} sh(x + ky)$.

Fonctions trigonométriques

Exercice 14.__

Soit p et q deux réels.

1. À quelle condition a-t-on $\sin p + \sin q \neq 0$?

2. Si la condition de la question précédente est remplie, simplifier $\frac{\cos p - \cos q}{\sin p + \sin q}$

3. En déduire tan $\frac{\pi}{24}$.

 \mathbf{V}

 \mathbf{V}

Montrer que le graphe de arccos possède un centre de symétrie.

Exercice 16.

Montrer les formules suivantes :

- $= \frac{\pi}{2} = 2 \arctan \frac{1}{2} + \arctan \frac{4}{7} + \arctan \frac{1}{8} \text{ (Newton, 1676)};$
- $\blacktriangleright \frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$ (Schulz von Strassnitzky, 1844).

Exercice 17._

- 1. Montrer que $\arctan(2\sqrt{2}) + 2\arctan(\sqrt{2}) = \pi$.
- 2. En déduire la valeur de arctan $\left(\frac{1}{2\sqrt{2}}\right) + 2 \arctan\left(\frac{1}{\sqrt{2}}\right)$.

Études de fonctions

Autocorrection C._

Pour chacune des expressions suivantes, dire pour quelles valeurs de x elle a un sens. On obtient ainsi une fonction $f: D \to \mathbb{R}$, pour une certaine partie $D \subseteq \mathbb{R}$. Préciser un ensemble D' de points où f est dérivable, et la dériver. (On désigne par a, b, des nombres réels > 0 fixés une fois pour toutes).

- (a) $\exp(-\alpha/x^2)$;
- (b) $\frac{\cos(\alpha x^2 + bx + 1)}{\sin x};$ (c) $\left(1 + \frac{a}{x}\right)^x;$
- (d) $\sqrt{1 + \cos^2 x}$:
- (e) $(ax + b)^x$;
- (f) $x a\sqrt{x}$;
- (g) $arctan(e^x)$;
- (h) $\arcsin(x^2-1)$;
- (i) $\arccos\left(\frac{1}{1+x}\right)$;
- (j) $\arctan \sqrt{\frac{1-\sin x}{1+\sin x}}$;
- (k) $\frac{\cos^3 x}{(1-\cos x)^2}$;
- (l) $\sin\left(\ln x + \frac{1}{x}\right)$;
- (m) $\frac{x+1}{\sin(2x)}$;
- (n) $\sin((2x+5)^2)$;
- (o) $\arccos\left(\frac{1+x}{1-x}\right)$;
- (p) $\sqrt{\arcsin x \frac{\pi}{6}}$;

- (q) $\arcsin(\tan x)$;
- (r) sh x sin x;
- (s) $\sqrt{x+\sqrt{x}}$;
- (t) ln(1 + ch x);
- (u) χ^{χ} ;
- (v) $\cos(x) \ln(1+x)$;
- (w) $\ln\left(\tan\left(\frac{x}{2}\right)\right)$;
- (x) arctan(ch(x));
- (y) $\frac{1}{\sinh(\arcsin(x))}$;
- (α) ln(arctan x);
- $(\beta) (\operatorname{ch} x)^{x};$
- $(\gamma) x^3 \cos(5x+1);$
- $(\varepsilon) \ln(e^{x}+1);$
- $(\zeta) e^{x^3+2x^2+3x+4}$:
- $(\eta) \ exp\left(\sqrt{x^2+x+1}\right);$
- $(\theta) \frac{\exp(1/x) + 1}{\exp(1/x) 1};$

- $(\iota) \frac{\cos(2x)}{x^2};$
- (κ) $\ln(\cos(2x))$;
- (λ) $\frac{|x| \sqrt{x^2 2x + 1}}{x 1}$;
- (μ) $\ln\left(x-\sqrt{x^2-1}\right)$;
- $(\nu) \ln \sqrt{\frac{x+1}{x-1}};$
- $(\xi) \ln(\ln x);$
- (o) ln(ln(ln x));
- $(\pi) \sin x \sin \frac{1}{x};$
- (ρ) $\sqrt{1+x^2\sin^2 x}$;
- (σ) $\ln\left(\frac{1+\sin x}{1-\sin x}\right)$;
- $(\tau) e^{\cos x}$
- $(\upsilon) \frac{x}{x^2+1};$
- $(\varphi) \arcsin\left(\frac{1}{\cosh x}\right);$
- $(\chi) \frac{\chi}{\sin \chi};$
- (ψ) ln(arcsin(x^2));
- (ω) $\ln(e^x + \sin x)$.

Exercice 18._

 \mathbf{V}

Étudier, selon le plan vu en cours, les fonctions définies par les expressions suivantes.

(i)
$$\frac{x^3}{x^2-3}$$
;

(iii)
$$\sqrt{\frac{\ln|x|}{x}}$$
;
(iv) $\frac{\tan 2x}{\tan x}$;

(v) x arctan
$$\frac{1}{x}$$
;

(ii)
$$ln(x^2-1)$$
;

(iv)
$$\frac{\tan 2x}{\tan x}$$

(vi)
$$\sin(3x) + 3\sin x$$
.

Soit W : $\mathbb{R}_+ \to \mathbb{R}_+$ une fonction, que l'on ne suppose pas dérivable *a priori*. On suppose que

$$\forall x \in \mathbb{R}_+, W(x) e^{W(x)} = x.$$

Déterminer les variations de W.

Identités

Exercice 20⁺.____

1. Soit $a,b,c\in\mathbb{R}$ tels que $\forall x\in\mathbb{R}, a\,e^{2x}+b\,e^x+c=e^{2x}+2e^x-1.$

Peut-on en déduire a = 1, b = 2 et c = -1?

2. Même question avec l'égalité $\forall x \in [-1, 1]$, a $\arccos x + b$ $\arcsin x + c = \arccos x + 2\arcsin x - 1$.

Exercice 21._

₽₹

- 1. Pour $x \in \mathbb{R}$, simplifier $\arctan(\sinh x) + \arccos(\th x)$.
- 2. Résoudre l'équation th $x = \frac{5}{13}$ d'inconnue $x \in \mathbb{R}$.
- 3. En déduire l'égalité arctan $\frac{5}{12}$ + arccos $\frac{5}{13} = \frac{\pi}{2}$.

Exercice 22.

- 1. Soit a et b deux réels tels que $ab \neq 1$. Simplifier arctan $a + \arctan b \arctan \frac{a+b}{1-ab}$.
- 2. Soit $x \in \mathbb{R}$. Simplifier $\arctan \frac{1+x}{1-x}$.

Exercice 23._

- 1. Montrer, à l'aide d'une étude de fonctions, que $\forall n \in \mathbb{N}^*$, arctan $\frac{1}{\sqrt{n}} = \arcsin \frac{1}{\sqrt{n+1}}$.
- 2. Démontrer le même résultat à l'aide de trigonométrie élémentaire.

Exercice 24.

- 1. Soit $x \in \mathbb{R}$. Simplifier $\arctan(x+1) \arctan x$.
- 2. Soit $n \ge 1$. Déduire de ce qui précède une expression de $S_n = \sum_{k=0}^{n} \arctan \frac{1}{k^2 + k + 1}$.
- 3. Que dire de S_n quand $n \to +\infty$?

Exercice 25.

Dire pour quels $x \in \mathbb{R}$ les expressions suivantes ont un sens, puis simplifier.

(i)
$$\frac{1+\sin x}{\cos x} - \frac{\cos x}{1-\sin x}$$
;

(vi) cos(arctan x);

(i)
$$\frac{1 + \sin x}{\cos x} - \frac{\cos x}{1 - \sin x}$$
;
(ii) $\frac{1 - \tan^2 x}{1 + \tan^2 x}$;

(vii) cos(2 arccos x);

(ii)
$$\frac{1-\tan^2 x}{1+\tan^2 x}$$
;

(viii) $cos(2 \arcsin x)$;

(iii)
$$\frac{1 - 2\cos x - 3\cos^2 x}{\sin^2 x} - \frac{1 - 3\cos x}{1 - \cos x};$$

(ix) $\sin(2\arccos x)$;

(x) $cos(2 \arctan x)$;

(iv) tan(arcsin x);

(xi) $sin(2 \arctan x)$;

(v) $\sin(\arccos x)$;

(xii) $tan(2 \arcsin x)$.

Inégalités

Exercice 26.

 \mathbf{V}

Montrer les inégalités suivantes.

(i)
$$\forall x > 0, x + \frac{1}{x} \geqslant 2;$$

(iii)
$$\forall x \in [0,2], \frac{1}{3} \leqslant \frac{x+1}{x^2+3} \leqslant \frac{1}{2};$$

(ii)
$$\forall x \in]0,4[\setminus\{1\},\left|\frac{x+2}{1-x}\right| \geqslant 2;$$

(iv)
$$\forall x \in \mathbb{R}, -\frac{1}{6} \leqslant \frac{x+1}{x^2+3} \leqslant \frac{1}{2}$$
.

Exercice 27.__

 \mathbf{V}

0

Montrer les inégalités suivantes.

(i)
$$\forall x \in \mathbb{R}_+, e^x \geqslant 1 + x$$
;

(iv)
$$\forall x \ge 0, (x-2)e^x + (x+2) \ge 0;$$

(ii)
$$\forall x \in \mathbb{R}_+^* \setminus \{1\}, \frac{x+1}{x-1} \ln x \geqslant 2;$$

(v)
$$\forall n \geqslant 2, \left(1 + \frac{1}{n}\right)^n \leqslant e \leqslant \left(1 - \frac{1}{n}\right)^{-n}$$
.

(iii)
$$\forall x > 0, x \ln x - (x - 1) \le (x - 1)^2$$
;

Exercice 28._

Montrer les inégalités suivantes.

(i)
$$\forall x \in \mathbb{R}, |\sin x| \leqslant |x|;$$

(iii)
$$\forall x \in \mathbb{R}, 0 \leqslant 1 - \cos x \leqslant \frac{x^2}{2}$$
;

(ii)
$$\forall x \in [-1, 1], |arcsin x| \geqslant |x|;$$

(iv)
$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, |\tan x| \geqslant |x|.$$

Exercice 29 (Inégalité de Huygens).

Montrer $\forall x \in \left[0, \frac{\pi}{2}\right], x \leqslant \frac{2}{3}\sin(x) + \frac{1}{3}\tan(x)$.

Exercice 30⁺ (Inégalité de Mitrinović-Adamović).

Montrer $\forall x \in \left]0, \frac{\pi}{2}\right], \cos(x) < \left(\frac{\sin x}{x}\right)^3$.

Exercice 31.__

Montrer
$$\forall p \in \mathbb{N}, \forall x \in]-1, +\infty[$$
, $\ln(1+x) \leqslant \sum_{k=1}^{2p+1} (-1)^{k+1} \frac{x^k}{k}$.

Exercice 32⁺._

Soit $A\subseteq\mathbb{R}$ de cardinal 13. Montrer qu'il existe $a,b\in A$ tels que

$$0 < \frac{a-b}{1+ab} \leqslant 2 - \sqrt{3}.$$

Équations

Exercice 33.

✓

- 1. Montrer que l'équation $x \ln x = 1$ possède une unique solution dans \mathbb{R}_+^* .
- 2. Montrer que la fonction $\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1}{ch \, x} \end{cases}$ possède un unique point fixe.
- 3. Montrer que l'équation $e^{-x^2} = e^x 1$ possède une unique solution dans \mathbb{R} .

Exercice 34.
Résoudre l'équation $\cos^3 x + \sin^3 x = 1$.

Exercice 35.

6

Résoudre les équations suivantes.

(i)
$$\cos(2x - \pi/3) = \sin(x + 3\pi/4)$$
; (iv) $\sin x + \sin 2x + \sin 3x = 0$;

(ii)
$$\cos 4x + \sin 4x = 1$$
; (v) $3\cos x - 3\sin x = 6$;

(iii)
$$\sin x + \sin 3x = 0$$
; (vi) $2\sin x \cos x + \sqrt{3}\cos 2x = 0$.

Exercice 36.

Résoudre l'équation $\tan x \tan 2x = 1$.

Exercice 37. Résoudre les équations suivantes.

(i) $\arcsin 2x = \arccos x$;

(ii)
$$\arcsin(x+1) - \arcsin x = \frac{\pi}{6}$$
;

(iii)
$$\arctan x + \arctan(2x) = \frac{\pi}{4}$$
;

(iv)
$$\arcsin x = \arccos \frac{1}{3} - \arccos \frac{1}{4}$$
;

(v)
$$\arcsin \frac{2x}{1+x^2} = \frac{\pi}{3}$$
;

(vi) $\arcsin x = \arctan 2 + \arctan 3$.

Dérivées supérieures

Exercice 38.

 \mathbf{V}

Soit $n \in \mathbb{N}$ et $\alpha \in \mathbb{R}$. Déterminer la dérivée n-ième des applications suivantes.

- (i) $x \mapsto \cos(3x)$;
- $\begin{array}{ll} \text{(iv)} \ x \mapsto x^{\alpha}; \\ \text{(v)} \ x \mapsto x^{2} \sin x; \\ \text{(vi)} \ x \mapsto \cos^{3} x; \\ \end{array} \qquad \begin{array}{ll} \text{(vii)} \ x \mapsto \frac{1}{x^{2}-1}; \\ \text{(viii)} \ x \mapsto x^{n-1} \ln(1+x). \end{array}$
- (ii) $x \mapsto x^5 e^{3x}$; (iii) $x \mapsto e^x \cos x$;

Exercice 39.

Ŷ

Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième de la fonction $f_n : x \mapsto x^{n-1}e^{1/x}$.

Exercice 40⁺.____

0

On note $f = \arctan pour simplifier$.

1. Montrer que f est lisse et que

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f^{(n)}(x) = (n-1)! \cos^n \left(f(x) \right) \sin \left(n \left(\frac{\pi}{2} + f(x) \right) \right).$$

2. En déduire, pour tout $n \in \mathbb{N}$, l'ensemble des points d'annulation de $f^{(n)}$.

Exercice 41⁺.___

Montrer que la fonction tan est lisse et absolument monotone sur $\left[0, \frac{\pi}{2}\right]$, c'est-à-dire que

$$\forall n \in \mathbb{N}, \forall x \in \left[0, \frac{\pi}{2}\right], \tan^{(n)}(x) \geqslant 0.$$

Exercice 42⁺.__

1. Montrer que la fonction arcsin est trois fois dérivable sur]-1,1[et calculer $f = \frac{\arcsin''}{\arcsin'}$.

On exprimera le résultat sous la forme d'une fonction $x \mapsto \frac{\alpha}{x+\beta} + \frac{\gamma}{x+\delta}$.

On dit qu'une fonction est absolument monotone sur un intervalle si elle y est lisse, et que toutes ses dérivées y sont ≥ 0 .

- 2. Montrer que f est absolument monotone sur [0, 1[.
- 3. En déduire que arcsin est absolument monotone sur [0, 1[.

Exercice 43.___

En calculant de deux façons la dérivée n-ième de $x\mapsto x^{2n}$, retrouver l'expression de $\sum_{k=0}^n \binom{n}{k}^2$.

Exercice 44⁺._

Soit $n \in \mathbb{N}^*$. En calculant de deux façons différentes la dérivée n-ième de $x \mapsto x^n \ln(x)$, montrer

$$\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = \sum_{k=1}^{n} \frac{1}{k}.$$

Introduction aux développements limités

Calcul

Autocorrection D.

 $\overline{\checkmark}$

Déterminer les développements limités suivants.

(i) DL₃(0) de
$$x \mapsto e^x \sqrt[3]{1+x}$$
;

(ii)
$$DL_3(0)$$
 de $x \mapsto \sin(x) \ln(1+x)$;

(iii) DL₃(0) de
$$x \mapsto \sqrt{1 + \sin x}$$
;

(iv) DL₃(0) de
$$x \mapsto (e^x - 1) \sin x$$
;

(v)
$$DL_2(0)$$
 de $x \mapsto \frac{x}{e^x - 1}$;

(vi) DL₂(0) de
$$x \mapsto e^{\cos x} - (1+x)^{\frac{1}{x}}$$
;

(vii)
$$DL_8(0)$$
 de $x \mapsto (\sin x)^4$;

(viii)
$$DL_6(0)$$
 de $x \mapsto \tan x$;

(ix) DL₄(0) de
$$x \mapsto \frac{xe^{-x}}{2x+1}$$
;

(x)
$$DL_3(0)$$
 de $x \mapsto (\cos x)^{1/x}$;

(xi)
$$DL_{100}(2)$$
 de $x \mapsto x^4$;

(xii) DL₂(1) de
$$x \mapsto \sqrt{x}$$
;

(xiii)
$$DL_2(1)$$
 de $x \mapsto \frac{1}{1+x}$;

(xiv)
$$DL_3(1)$$
 de exp;

(xv) DL₂
$$\left(\frac{\pi}{3}\right)$$
 de $x \mapsto \sin(x)\cos(3x)$;

(xvi)
$$DL_3\left(\frac{\pi}{4}\right) de x \mapsto \sqrt{\tan x}$$
;

(xvii) DL₃(1) de
$$x \mapsto \frac{x \ln x}{x^2 - 1}$$
.

Exercice 45.

- 1. À l'aide de la méthode générale de calcul des DL, déterminer un $DL_8(0)$ de tan.
- 2. Retrouver ce $DL_8(0)$ à l'aide du théorème de Taylor-Young.

Pourquoi est-ce ici une idée raisonnable?

Exercice 46._

_☑

- 1. Donner le $DL_3(0)$ de $x \mapsto (1+x)^{1/x}$.
- 2. Donner le DL₃(0) de $x \mapsto \sqrt{1 + \sqrt{1 + x}}$.

Exercice 47.__

- 1. Soit $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto xe^{x^2} \end{cases}$.
 - (a) Montrer que f est une bijection de \mathbb{R} dans lui-même.
 - (b) Montrer que sa réciproque f⁻¹ admet un développement limité à l'ordre 5 de la forme

$$f^{-1}(x) = ax + bx^3 + cx^5 + o_0(x^5).$$

- (c) En utilisant l'égalité $f^{-1} \circ f = id_{\mathbb{R}}$, déterminer \mathfrak{a} , \mathfrak{b} et \mathfrak{c} .
- 2. Suivre le même schéma pour obtenir un $DL_3(0)$ de la réciproque de $x \mapsto 2x + \sin x$.

Exercice 48.____

_У

Soit $f: x \mapsto \arctan \frac{\sqrt{3} + x}{1 + x\sqrt{3}}$. En commençant par calculer f', déterminer le $DL_4(0)$ de f.

Exercice 49._

Donner le $DL_{12}(0)$ de $x \mapsto ln\left(\sum_{k=0}^{11} \frac{x^k}{k!}\right)$.

Exercice 50.____

Une fonction paire telle que $f(x) = 1 + x^2 + o(x^2)$ vérifie-t-elle $f(x) = 1 + x^2 + o(x^3)$?

Applications

Autocorrection E.

Déterminer la nature (convergente ou divergente) des fonctions suivantes, au voisinage du point donné. On précisera la limite dans le cas convergent.

(i)
$$x \mapsto \frac{\ln(1+x) - \sin(x)}{\tan x - x}$$
 (en 0);

(iv)
$$x \mapsto \frac{x - \arctan x}{\sin^3 x}$$
 (en 0);

(ii)
$$x \mapsto \frac{\ln(2x^2 - 1)}{\tan(x - 1)}$$
 (en 1);

(v)
$$x \mapsto \frac{x^3 + 7x^2 - 8}{x^4 + x^3 - 2}$$
 (en 1);

(iii)
$$x \mapsto \frac{1}{x^3} - \frac{1}{\sin^3 x}$$
 (en 0);

(vi)
$$x \mapsto (\cos x)^{\ln |x|}$$
 (en 0).

 \mathbf{V}

Soit $f,g \in C^{\infty}(\mathbb{R})$ impaires telles que f'(0)=g'(0)=1. Calculer $\lim_{x\to 0}\frac{f(g(x))-g(f(x))}{x^6}$.

Exercice 52.__

Soit $n \in \mathbb{N}^*$. On note $f = \sin^n$. Calculer, pour tout $k \in [0, n]$, $f^{(k)}(0)$.

Exercice 53⁺.__

Soit $n \in \mathbb{N}^*$. En calculant de deux façons différentes le $DL_n(0)$ de $x \mapsto (e^x - 1)^n$, calculer, pour tout $p \in [0, n]$, la somme

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{p}.$$

Exercice 54^+ .
Soit $f: x \mapsto \ln\left(\frac{x^2 + x + 1}{x + 1}\right)$. Montrer que $f^{(1789)}(0) = 0$.