Lycée Henri-IV (PCSI) TD 14 (indications)

Limites et continuité

Exercice 5
Pour la croissance, on pourra considérer deux points xo < x; dans ]a, b[ et montrer I’encadrement
flxg) < fx1) < f0).

Exercice 8
L’exercice n’est pas facile parce que rien ne dit a priori que les fonctions f et g possedent la méme
période. Mais une démonstration astucieuse montre que si g est, par exemple, T-périodique, alors il
en ira de méme de f.

Exercice 9

=1
1
Quelles sont les valeurs prises par la fonction x — {J ?
X

Exercice 11.
Pour la deuxieme question, on pourra chercher un exemple de la forme 1 pour un choix judicieux
de partie A C R.

Exercice 13
On pourra s’inspirer de la preuve du théoreme de Cesaro.

Exercice 15
Soit xg € R. Le théoréme de la limite monotone montre déja I'inégalité f(x,) < f (xg). Il s’agit donc
d’utiliser 1’autre hypothése pour démontrer 'inégalité réciproque.

Exercice 20
Pour la premiére question, il est facile de montrer que, quel que soit x € I, f(x) = £g(x). La difficulté
est de montrer que le signe remplagant le + ne dépend pas de x.

Exercice 42
On pourra d’abord montrer le résultat en restriction a N, puis a Z, puis a Q.

Exercice 43
On pourra commencer par montrer la définition de la convexité avec A € [0, 1] dyadique (c’est-a-dire
un rationnel dont le dénominateur est une puissance de 2).

Exercice 45

On pourra commencer par montrer que Vx € R,vn € N, f (Zi“) = f(x).

Exercice 48
Le théoreme des valeurs intermédiaires montre que dans tous les cas, f[I] est un intervalle. Pour
savoir quels types d’intervalles sont possibles, il est bon de tracer approximativement des graphes
possibles avant de chercher a donner des formules.




Exercice 55.
On pourra (notamment) définir proprement la propriété « f n’est pas majorée au voisinage de +oo »
et montrer — en utilisant la continuité — que si f n’est pas majorée au voisinage de +oo, alors il en va
de méme de f o f.

Exercice 56
Une premiere étape est de montrer que f est une application bijective. Cela permet ensuite d’étudier
des « suites récurrentes » indexées par Z d’itératrice f.

Méme avec ces indications, 1'exercice garde du mordant...

Exercice 60.
Il est possible d’obtenir un tel développement asymptotique a 1’aide du DL, (0) de arctan.

Autocorrection
Autocorrection A.
(i 0; gauche (on peut factoriser : x> — 3x +2 =
(ii) la fonction n’a pas de limite (on peut (x—1)*(x+2) et 2x* —x—1 = (2x+1)(x—1));

trouver deux suites (£5)nen telles que (xiv) e;
&T:E'——>+OO et cos ((Eff)z) -_:—H:]); (xv) 1 +V2;
n o

n—-+oo 1
(iii) 1; (xvi) _E;
(iv) +o0; o ]

(xvii) =;
(v) 0; 2
wi) 1; (xviii) 1;
(vii) 1; (xix) On obtient facilement In(1 4+ h) ol h et
7 —

(viii) e; In(In(1 + h)) ot Inh donc la fonction est
(ix) 1; ot h In(h), et elle tend vers O par crois-
) 1, sances comparées;

' 2’ (xx) On sait que la fonction arccos n’est pas déri-
(xi) 1; vable en 1, avec une tangente verticale. Cela
(xii) +o0; d arccos x — arccos(1)
onne —00
(xiii) la fonction n’a pas de limite, mais elle x—1 x—1
. 1=x
converge vers @ a droite et —ﬁ a Ainsi, —— —— 0.
3 3 arccosx x—1

Autocorrection B

(i) La formule définit une application f : R* — R, continue par opérations.

1
Ona —— —— —oo, donc f(x) —— 0: la fonction admet le prolongement continu

Xz x—0 x—0
R — R
~ . )
f: N (x) six#0
0 sinon.



N

|

(ii) La formule définit une application f : R \ {1} — R, continue par opérations.

OnaxInx p—y 0 par croissances comparées, donc f(x) — 0.
X— X—

Inx —In1

Par ailleurs, on a la limite du taux d’accroissement In’(1) =1, ce qui implique

x—1 x—1

f(x) — 1.
x—1

Ainsi, la fonction admet le prolongement continu

R, — R
- f(x) six ¢&{0,1}
]l x =<0 six=0;
1 six=1.
(iii) La formule définit une application
RA\{1} — R
f: 2_1 —1
X X _ X (x+1) =(x+1) x signe(x — 1),
x—1  [x—T|
continue par opérations.
Ona
f(x) — =2 et f(x) — 2,
x—1 x—1
x<1 x>1

donc f n’a pas de limite en 2, et f n’a donc pas de prolongement continu en 1.

A




(iv) La formule définit une application

RA\{1} = R
f: 2 1)
X = (Catulll =[x —1] x (x+ 1)

x—1]
continue par opérations.
Ona

f(x) — 0,

x—1

donc f admet le prolongement continu

R— R
f: N f(x) six#0
0 sinon.
(v) La formule définit une application
R* — R

. N
X + sinx X sin () )
X
continue par opérations.
Ona
vx, If(x)] < [sinx],
~—
——0

x—0
donc le théoréme des gendarmes entraine que f(x) P 0, ce qui entraine que f admet le
X—100

prolongement continu

R — R
f: - f(x) six=#0
0 six =0.

e Wan

———

(vi) La formule définit une application
R* — R

X = COSX X COSs <> y
X

4



continue par opérations.

Considérons deux suites (&ff)neN* définies par

e L
meNE=nrme Y BT e

Ces suites sont a valeurs dans R*, et convergent vers 0. Par continuité, cela entraine que

- +
cos(&;) P 1 et cos(&;)) P 1.

1
On a, pour tout n € N*, cos <£> = —1,donc

mn

f(&,) = cos(&,) x cos <1> S

n n—-+oo

£+

1
De méme, on a, pour tout n € N*, cos <> =1,donc
mn

(&) = cos(&) x cos <]> = 1

En

Cela démontre que f n’a pas de limite en 0. En particulier, f n’est pas prolongeable par conti-
nuité en 0.

Autocorrection C
Soit

£ R — R
N x = e —In(x?+1).

C’est une fonction continue, par opérations.

Onaf(0)=1>0,f(1) =e—m?In(2) < 0, et les limites

f(x) —— —o0 et f(x) ——— 400 (par croissance comparée).
X——00 X—-+00
» D’apres le théoreme des valeurs intermédiaires (généralisé), la fonction f s’annule en un point
X0 € ]—00, 0], nécessairement xy < 0 (car f(0) # 0).
» D’apres le théoreme des valeurs intermédiaires, la fonction f s’annule en un point x; € [0, 1],
nécessairement 0 < x7 < 1.

» D’apres le théoreme des valeurs intermédiaires (généralisé), la fonction f s’annule en un point
x1 € ]1, +00], nécessairement x; > 1 (car f(1) # 0).



Autocorrection D

@ [x] ~ x;

X—+00
(ii) P32 —x+2 %etX4+3X2_X+2 X
2x3 —x x—=0 X 2x3 —x x—+o0 2

(iii) In(1 +x?) — sin(x?) + 2 cos?(x) .

) Inx
(1V)\/ﬁx:]\/x—1,
) 11 1 1T 1

~ —e
x T4+x 24xx20%x X

~ 2Inx;
—+o0

1 1 1

14+ x Z—i-Xfo:oo;’

X T
(vi) 1+e® —arctanx ~ l+e+ =;
X (e.0] 2

- x—1/4
(vii) \/\/x+2—\/x—|—1 e kK
(vii) sin(x) T—X

\/)z X—7T \/F[ /
3
(ix) VX +2 x5/6;

\3/)?2_'_376*):00
) VE+T—vVx2—1 ~ iy

X—+00 X,
L In(x+1) 1
(xd) Inx x—+o00 xInx

(xii) Pour tout x > e, on a

VIn(x+1) = /In(x — 1)

oo (D)o

)

= \/lnx—Hn <1 +l> —\/lnx—l—ln <1

1

X

)



1
In (1 +>
=+vInx 1+7x

Cette expression peut paraitre horrible, mais on a en fait appliqué a fond 1'idée de factoriser par
les termes prépondérants, et on se retrouve maintenant dans une position idéale pour utiliser
desDLdeu+— In(T+u)ouu— vV1+u.

Or, quand x — +o0,

w(1o)-te()
n(+]) S

u—0
1

In1T+u)=14+u+ o (u)
car
-—0

donc Inx - x Inx x Inx

Ainsi,

On en déduit

In (1—1—]) In <1—]>
X X 1 1
T+ ————2 —\[T+ = +o< )

Inx Inx ~ xInx x Inx
1

~ .
x—0 X Inx

Ainsi, d"aprés les propriétés multiplicatives de I’équivalence,

In <1 +> In (11>
VIn(1 4+ x) — /In(1 —x) = VInx 1N X \gy N X

Inx Inx

~ Inx x
X—4-00 x Inx

X—+00 Xw/lnx.



(xiii) xIn(x+1)—(x+1)Inx ~ —Inx;
X—400

(xiv) V14+x2—/1— NOX

=
(xv) tanx —sinx ~ lx3‘
x—0 2
(xvi) In(1+4sinx) ~ x;
x—0
(xvii) In(In(1+x)) ~ Inx;
x—0
(xviii) In(cos(1—h)) ~ In(h), ce que I'on peut réécrire de fagon plus académique (mais plus pertur-
s
bante) In(cos(1 + h)) s In(—h) ou encore In(cos x) N In (E — x).



