
Lycée Henri-IV (PCSI) TD 14 (indications)

Limites et continuité

Exercice 5.
Pour la croissance, on pourra considérer deux points x0 < x1 dans ]a, b[ et montrer l’encadrement
f(x+0 ) ⩽ f(x1) ⩽ f(x+1 ).

Exercice 8.
L’exercice n’est pas facile parce que rien ne dit a priori que les fonctions f et g possèdent la même
période. Mais une démonstration astucieuse montre que si g est, par exemple, T-périodique, alors il
en ira de même de f.

Exercice 9.

Quelles sont les valeurs prises par la fonction x 7→ ⌊
1

x

⌋−1

?

Exercice 11.
Pour la deuxième question, on pourra chercher un exemple de la forme 1A pour un choix judicieux
de partie A ⊆ R.

Exercice 13.
On pourra s’inspirer de la preuve du théorème de Cesàro.

Exercice 15.
Soit x0 ∈ R∗

+. Le théorème de la limite monotone montre déjà l’inégalité f(x−0 ) ⩽ f(x+0 ). Il s’agit donc
d’utiliser l’autre hypothèse pour démontrer l’inégalité réciproque.

Exercice 20.
Pour la première question, il est facile de montrer que, quel que soit x ∈ I, f(x) = ±g(x). La difficulté
est de montrer que le signe remplaçant le ± ne dépend pas de x.

Exercice 42.
On pourra d’abord montrer le résultat en restriction à N, puis à Z, puis à Q.

Exercice 43.
On pourra commencer par montrer la définition de la convexité avec λ ∈ [0, 1] dyadique (c’est-à-dire
un rationnel dont le dénominateur est une puissance de 2).

Exercice 45.
On pourra commencer par montrer que ∀x ∈ R, ∀n ∈ N, f

( x

2n

)
= f(x).

Exercice 48.
Le théorème des valeurs intermédiaires montre que dans tous les cas, f[I] est un intervalle. Pour
savoir quels types d’intervalles sont possibles, il est bon de tracer approximativement des graphes
possibles avant de chercher à donner des formules.
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Exercice 55.
On pourra (notamment) définir proprement la propriété « f n’est pas majorée au voisinage de +∞ »
et montrer – en utilisant la continuité – que si f n’est pas majorée au voisinage de +∞, alors il en va
de même de f ◦ f.

Exercice 56.
Une première étape est de montrer que f est une application bijective. Cela permet ensuite d’étudier
des « suites récurrentes » indexées par Z d’itératrice f.

Même avec ces indications, l’exercice garde du mordant...

Exercice 60.
Il est possible d’obtenir un tel développement asymptotique à l’aide du DLn(0) de arctan.

Autocorrection

Autocorrection A.

(i) 0 ;
(ii) la fonction n’a pas de limite (on peut

trouver deux suites (ξ±n )n∈N telles que
ξ±n −−−−−→

n→+∞ +∞ et cos
(
(ξ±n )

2
)
−−−−−→
n→+∞ ±1) ;

(iii) 1 ;
(iv) +∞ ;
(v) 0 ;

(vi) 1 ;
(vii) 1 ;

(viii) e ;
(ix) 1 ;

(x)
1

2
;

(xi) 1 ;
(xii) +∞ ;

(xiii) la fonction n’a pas de limite, mais elle

converge vers
√
3

3
à droite et −

√
3

3
à

gauche (on peut factoriser : x3 − 3x + 2 =
(x−1)2(x+2) et 2x2−x−1 = (2x+1)(x−1)) ;

(xiv) e ;
(xv) 1+

√
2 ;

(xvi) −
1

2
;

(xvii)
1

2
;

(xviii) 1 ;
(xix) On obtient facilement ln(1 + h) ∼

h→0
h et

ln(ln(1 + h)) ∼
h→0

lnh donc la fonction est

∼
h→0

h ln(h), et elle tend vers 0 par crois-

sances comparées ;
(xx) On sait que la fonction arccos n’est pas déri-

vable en 1, avec une tangente verticale. Cela

donne
arccos x− arccos(1)

x− 1
−−−→
x→1

−∞.

Ainsi,
1− x

arccos x
−−−→
x→1

0.

Autocorrection B.

(i) La formule définit une application f : R∗ → R, continue par opérations.

On a −
1

x2
−−−→
x→0

−∞, donc f(x) −−−→
x→0

0 : la fonction admet le prolongement continu

f̃ :


R → R

x 7→ {
f(x) si x ̸= 0

0 sinon.
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(ii) La formule définit une application f : R∗
+ \ {1} → R, continue par opérations.

On a x ln x −−−→
x→0

0 par croissances comparées, donc f(x) −−−→
x→0

0.

Par ailleurs, on a la limite du taux d’accroissement
ln x− ln 1

x− 1
−−−→
x→1

ln ′(1) = 1, ce qui implique

f(x) −−−→
x→1

1.

Ainsi, la fonction admet le prolongement continu

f̃ :


R+ → R

x 7→

f(x) si x ̸∈ {0, 1}

0 si x = 0 ;
1 si x = 1.

(iii) La formule définit une application

f :


R \ {1} → R

x 7→ x2 − 1

|x− 1|
=

x− 1

|x− 1|
(x+ 1) = (x+ 1)× signe(x− 1),

continue par opérations.

On a
f(x) −−−→

x→1
x<1

−2 et f(x) −−−→
x→1
x>1

2,

donc f n’a pas de limite en 2, et f n’a donc pas de prolongement continu en 1.
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(iv) La formule définit une application

f :


R \ {1} → R

x 7→ (x2 − 1)2

|x− 1|
= |x− 1|× (x+ 1)2,

continue par opérations.

On a
f(x) −−−→

x→1
0,

donc f admet le prolongement continu

f̃ :


R → R

x 7→ {
f(x) si x ̸= 0

0 sinon.

(v) La formule définit une application

f :

R∗ → R

x 7→ sin x× sin
(
1

x

)
,

continue par opérations.

On a
∀x, |f(x)| ⩽ |sin x|︸ ︷︷ ︸

−−−→
x→0

0

,

donc le théorème des gendarmes entraîne que f(x) −−−−→
x→+∞ 0, ce qui entraîne que f admet le

prolongement continu

f̃ :


R → R

x 7→ {
f(x) si x ̸= 0

0 si x = 0.

(vi) La formule définit une application

f :

R∗ → R

x 7→ cos x× cos
(
1

x

)
,
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continue par opérations.

Considérons deux suites (ξ±n )n∈N∗ définies par

∀n ∈ N∗, ξ−n =
1

(2n+ 1)π
et ξ+n =

1

(2n)π
.

Ces suites sont à valeurs dans R∗, et convergent vers 0. Par continuité, cela entraîne que

cos(ξ−n) −−−−−→
n→+∞ 1 et cos(ξ+n) −−−−−→

n→+∞ 1.

On a, pour tout n ∈ N∗, cos
(

1

ξ−n

)
= −1, donc

f(ξ−n) = cos(ξ−n)× cos
(

1

ξ−n

)
−−−−−→
n→+∞ −1.

De même, on a, pour tout n ∈ N∗, cos
(

1

ξ+n

)
= 1, donc

f(ξ+n) = cos(ξ+n)× cos
(

1

ξ+n

)
−−−−−→
n→+∞ 1.

Cela démontre que f n’a pas de limite en 0. En particulier, f n’est pas prolongeable par conti-
nuité en 0.

Autocorrection C.
Soit

f :

{
R → R
x 7→ ex − π2 ln(x2 + 1).

C’est une fonction continue, par opérations.

On a f(0) = 1 > 0, f(1) = e− π2 ln(2) < 0, et les limites

f(x) −−−−→
x→−∞ −∞ et f(x) −−−−→

x→+∞ +∞ (par croissance comparée).

▶ D’après le théorème des valeurs intermédiaires (généralisé), la fonction f s’annule en un point
x0 ∈ ]−∞, 0], nécessairement x0 < 0 (car f(0) ̸= 0).

▶ D’après le théorème des valeurs intermédiaires, la fonction f s’annule en un point x1 ∈ [0, 1],
nécessairement 0 < x1 < 1.

▶ D’après le théorème des valeurs intermédiaires (généralisé), la fonction f s’annule en un point
x1 ∈ ]1,+∞], nécessairement x2 > 1 (car f(1) ̸= 0).
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Autocorrection D.

(i) ⌊x⌋ ∼
x→+∞ x ;

(ii)
x4 + 3x2 − x+ 2

2x3 − x
∼

x→0
−
2

x
et

x4 + 3x2 − x+ 2

2x3 − x
∼

x→+∞ x

2
;

(iii) ln(1+ x2) − sin(x2) + 2 cos2(x) ∼
x→+∞ 2 ln x ;

(iv)
ln x√
x− 1

∼
x→1

√
x− 1 ;

(v)
1

x
−

1

1+ x
+

1

2+ x
∼

x→0

1

x
et

1

x
−

1

1+ x
+

1

2+ x
∼

x→+∞ 1

x
;

(vi) 1+ ee
ex

− arctan x ∼
x→−∞ 1+ e+

π

2
;

(vii)
√√

x+ 2−
√
x+ 1 ∼

x→+∞ x−1/4

√
2

;

(viii)
sin(x)√

x
∼

x→π

π− x√
π

;

(ix)
√
x
3
+ 2

3
√
x
2
+ 3

∼
x→+∞ x5/6 ;

(x)
√

x2 + 1−
√

x2 − 1 ∼
x→+∞ 1

x
;

(xi)
ln(x+ 1)

ln x
− 1 ∼

x→+∞ 1

x ln x
;

(xii) Pour tout x > e, on a

√
ln(x+ 1) −

√
ln(x− 1) =

√
ln

(
x

(
1+

1

x

))
−

√
ln

(
x

(
1−

1

x

))

=

√
ln x+ ln

(
1+

1

x

)
−

√
ln x+ ln

(
1−

1

x

)
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=
√

ln x


√√√√√

1+

ln
(
1+

1

x

)
ln x

−

√√√√√
1+

ln
(
1−

1

x

)
ln x

 .

Cette expression peut paraître horrible, mais on a en fait appliqué à fond l’idée de factoriser par
les termes prépondérants, et on se retrouve maintenant dans une position idéale pour utiliser
des DL de u 7→ ln(1+ u) ou u 7→ √

1+ u.

Or, quand x → +∞,

ln
(
1+

1

x

)
=

1

x
+ o

(
1

x

)
car

ln(1+ u) = 1+ u+ o
u→0

(u)

1

x
−−−−→
x→+∞ 0

donc
ln

(
1+

1

x

)
ln x

=
1

x ln x
+ o

(
1

x ln x

)
.

Ainsi,√√√√√
1+

ln
(
1+

1

x

)
ln x

=

√
1+

1

x ln x
+ o

(
1

x ln x

)

= 1+
1

2

1

x ln x
+ o

(
1

x ln x

)
car



√
1+ u = 1+

1

2
u+ o

u→0
(u)

1

x ln x
+ o

(
1

x ln x

)
−−−−→
x→+∞ 0

1

x ln x
+ o

(
1

x ln x

)
= O

(
1

x ln x

)
.

Exactement de la même façon,√√√√√
1+

ln
(
1−

1

x

)
ln x

= 1−
1

2

1

x ln x
+ o

(
1

x ln x

)
.

On en déduit √√√√√
1+

ln
(
1+

1

x

)
ln x

−

√√√√√
1+

ln
(
1−

1

x

)
ln x

=
1

x ln x
+ o

(
1

x ln x

)
∼

x→0

1

x ln x
.

Ainsi, d’après les propriétés multiplicatives de l’équivalence,

√
ln(1+ x) −

√
ln(1− x) =

√
ln x


√√√√√

1+

ln
(
1+

1

x

)
ln x

−

√√√√√
1+

ln
(
1−

1

x

)
ln x


∼

x→+∞
√

ln x× 1

x ln x

∼
x→+∞ 1

x
√

ln x
.

7



(xiii) x ln(x+ 1) − (x+ 1) ln x ∼
x→+∞ − ln x ;

(xiv)
√

1+ x2 −
√

1− x2 ∼
x→0

x2 ;

(xv) tan x− sin x ∼
x→0

1

2
x3 ;

(xvi) ln(1+ sin x) ∼
x→0

x ;

(xvii) ln(ln(1+ x)) ∼
x→0

ln x ;

(xviii) ln
(
cos(1− h)

)
∼

h→0
ln(h), ce que l’on peut réécrire de façon plus académique (mais plus pertur-

bante) ln
(
cos(1+ h)

)
∼

h→0
ln(−h) ou encore ln

(
cos x

)
∼

x→π/2
ln

(π
2
− x

)
.

8


