
Lycée Henri-IV (PCSI) TD 16

Dérivation

Généralités

Autocorrection A. ✓
Dire, en justifiant, si les assertions suivantes sont vraies ou fausses.

(i) Si f est une application dérivable en a alors
f(a+ h) − f(a)

h
= f ′(a) pour h suffisamment petit.

(ii) Une application f n’est pas dérivable en a si et seulement si
∣∣∣∣f(x) − f(a)

x− a

∣∣∣∣ −−−→x→a
+∞.

(iii) Soit f : [a, b] → R et c ∈ ]a, b[. L’application f est dérivable si et seulement f|[a,c] et f|[c,b] le sont.
(iv) Une application dérivable de R∗ dans R dont la dérivée est nulle est constante.
(v) Il existe f ∈ D1(R+;R) tendant vers +∞ en +∞ et dont la dérivée tend vers 0.

(vi) Si f ∈ D1(R+;R) tend vers 0 en +∞, alors f ′ tend vers 0 en +∞.

Autocorrection B. ✓
Que peut-on dire de la dérivée d’une fonction dérivable paire? impaire? périodique?

Exercice 1.
Étudier la dérivabilité des fonctions suivantes (on précisera les domaines de définition).

1. x 7→√
x2 − x3 ;

2. x 7→ (x2 − 1) arccos(x2) ;

3. x 7→ x|x| ;

4. x 7→ x

|x|+ 1
.

Exercice 2.
En quels points la fonction x 7→ 1Q(x) x

2 est-elle dérivable?

Exercice 3.
Soit f : R → R dérivable. On suppose f paire et f ′ périodique. Montrer que f est périodique.

Exercice 4.
Pour tout λ ∈ R, on considère fλ : x 7→ x+ λ

x2 + 1
et sa tangente Tλ(a) au point d’abscisse a ∈ R.

1. Montrer que les droites Tλ(0) (pour λ ∈ R) sont parallèles.
2. Montrer que les droites Tλ(1) (pour λ ∈ R) sont concourantes.

Exercice 5. �✓
Soit f : [0, 1] → R une fonction dérivable. À quelle condition la fonction

g :


[0, 1] → R

x 7→ {
f(2x) si x ∈ [0, 1/2]

f(2x− 1) sinon

est-elle dérivable sur [0, 1]?
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Exercice 6+. ✓
Soit f, g ∈ D1(R) et x0 ∈ R.

Donner une condition nécessaire et suffisante pour que max(f, g) soit dérivable en x0.

Exercice 7.
Soit a ∈ R et f : R → R. On note σ[f,a] : x 7→ f(a+ h) − f(a− h)

2h
.

1. Montrer que si f est dérivable en a, la fonction σ[f,a] admet une limite finie en a (et la préciser).
2. La réciproque de la question précédente est-elle vraie?

Exercice 8. ✓
Soit a ∈ R et f : R → R une application dérivable en a.

Montrer que x 7→ xf(a) − af(x)

x− a
admet une limite en a, et la préciser.

Exercice 9+.

Soit f : R → R continue en 0, et g :

R∗
+ → R

h 7→ f(2h) − f(h)

h
.

Montrer que g possède une limite en 0 si et seulement si f est dérivable à droite en 0 (et, dans ce cas,
donner une relation entre lim

x→0
g(x) et f ′d(0)).

Exercice 10+. �
Soit f : R → R dérivable à droite en 0, et telle que f(0) = 0.

Déterminer la limite de la suite

(
n∑

k=1

f

(
k

n2

))
n∈N

.

Exercice 11+. ✓

On note, pour tout n ∈ N∗, Sn =

n−1∑
k=0

1

n+ k
.

1. Montrer que la suite (Sn)n∈N∗ converge. On note S sa limite.
2. Soit f : R+ → R dérivable et nulle en 0.

Calculer la limite de

(
n−1∑
k=0

f

(
1

n+ k

))
n∈N∗

en fonction de S et f ′(0).

3. En utilisant la fonction f : x 7→ ln(1+ x), calculer S.

Exercice 12+ (Équation fonctionnelle de Cauchy : le cas dérivable). �
Déterminer les fonctions f : R → R dérivables telles que ∀(x, y) ∈ R2, f(x+ y) = f(x) + f(y).

Exercice 13+. ✓
Trouver toutes les fonctions f : R+ → R dérivables telles que ∀x ∈ R+, f(2x) = 2f(x).
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Extrema

Autocorrection C. ✓
Soit f : [0, 1] → R dérivable, admettant un minimum local en 0. Que peut-on dire de f ′(0)?

Exercice 14. �
Déterminer max

{
n1/n

∣∣∣n ∈ N∗
}

.

Exercice 15.
Déterminer tous les extrema locaux de

f :


R → R

x 7→
e−1/|x|

(√
2+ sin

1

x

)
si x ̸= 0

0 si x = 0.

Théorèmes de Rolle, des accroissements finis et de la limite de la dérivée

Autocorrection D. ✓
Soit (a, b, c) ∈ R3. Montrer qu’il existe x ∈ ]0, 1[ tel que 4ax3 + 3bx2 + 2cx = a+ b+ c.

Exercice 16+.
Soit f : R+ → R dérivable. On suppose que f(x) −−−−→

x→+∞ ℓ ∈ R.

1. Montrer par un exemple que cela n’implique pas f ′(x) −−−−→
x→+∞ 0.

2. Montrer qu’il existe une suite (ξn)n∈N telle que ξn −−−−−→
n→+∞ +∞ et f ′(ξn) −−−−−→

n→+∞ 0.

Exercice 17. ✓
Soit f : R → R une fonction dérivable admettant une même limite finie ℓ ∈ R en ±∞.

On veut montrer que f ′ possède (au moins) un zéro sur R.

Première méthode. Posons

φ :

{]
−
π

2
,
π

2

[→ R
x 7→ f (tan(x)) .

1. Montrer que φ est dérivable.

2. Montrer que φ admet un prolongement continu φ̃ :
[
−
π

2
,
π

2

]→ R.

3. Montrer que ∃c ∈
]
−
π

2
,
π

2

[
: φ ′(c) = 0.

4. En déduire que f ′ possède (au moins) un zéro sur R.

Deuxième méthode. Montrer qu’il existe deux réels x− < x+ tels que f(x−) = f(x+) et conclure.

Exercice 18+. �✓
Soit f : R → R une fonction dérivable vérifiant f(0) = f(a) = f ′(0) = 0 pour un certain a ̸= 0.

Montrer qu’il existe un point (̸= (0, 0)) sur le graphe de f en lequel la tangente passe par (0, 0).

Exercice 19+.
Soit P un polynôme. Montrer que l’équation P(x) = ex n’admet qu’un nombre fini de solutions.
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Exercice 20++.
Soit P un polynôme tel que l’équation P(x) = cos(x) possède une infinité de solutions.

Montrer que P est constant.

Exercice 21. ✓
Soit f : R → R dérivable telle que f ′(x) −−−−→

x→+∞ +∞. Montrer que f(x) −−−−→
x→+∞ +∞.

Exercice 22 (Une autre démonstration du théorème de Darboux).
Soit f : I → R dérivable dont la dérivée ne s’annule pas.

1. Montrer qu’elle est injective.
2. En déduire que f ′ ne change pas de signe.
3. Démontrer le théorème de Darboux.

Exercice 23+ (Théorème de Darboux, démonstration topologique).

Soit f ∈ D1(R) et I un intervalle. On définit J =
{
f(a) − f(b)

b− a

∣∣∣∣a < b ∈ I
}

et K =
{
f ′(x)

∣∣ x ∈ I
}

.

1. Montrer J ⊆ K ⊆ J.
2. En déduire une nouvelle démonstration du théorème de Darboux.

Exercice 24+.

1. Soit f dérivable telle que xf ′(x) −−−−→
x→+∞ 1. Montrer que f(x) −−−−→

x→+∞ +∞.

2. Peut-on trouver f telle que xf ′(x) −−−−→
x→+∞ 0 et f(x) −−−−→

x→+∞ +∞?

Exercice 25.
Soit f ∈ D1([a, b];R) telle que f(a) = f(b) et f ′(a) > 0.

Montrer que f ′ prend au moins une valeur strictement négative sur [a, b].

Exercice 26+.
Soit f : R → R une fonction dérivable telle que ∀x ∈ R, f(x) f ′(x) ⩾ 0. Montrer que l’ensemble des
points où f ne s’annule pas est un intervalle de la forme ]T,+∞[, avec T ∈ R.

Exercice 27. ✓

1. Montrer ∀x ∈ R∗
+,

1

x+ 1
⩽ ln(x+ 1) − ln(x) ⩽

1

x
.

2. En déduire les limites de

(
1

lnn

n∑
k=1

1

k

)
n∈N∗

et

(
np∑

k=n+1

1

k

)
n∈N

.

Exercice 28.
Déterminer la limite éventuelle de x 7→ (x+ 1)e1/(x+1) − xe1/x en +∞.
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Exercice 29. ✓

1. (a) Dresser le tableau de variations de f : x 7→ ex

ex + 1
.

(b) Montrer que [0, 1] est un intervalle stable sous f et en déduire que f admet un point fixe
ℓ ∈ [0, 1].

(c) Montrer que f est contractante, c’est-à-dire c-lipschitzienne pour un certain c < 1.

(d) On définit une suite (un)n∈N en posant u0 ∈ [0, 1] et ∀n ∈ N, un+1 =
eun

eun + 1
.

Déduire de ce qui précède que la suite (un)n∈N converge.

2. Reprendre les questions pour la suite (vn)n∈N définie par v0 ∈ [0, 1] et ∀n ∈ N, vn+1 =
evn

vn + 2
.

Exercice 30.
Une fonction f : I → R est dite α-höldérienne s’il existe une constante C > 0 telle que

∀x, y ∈ I, |f(x) − f(y)| ⩽ C |x− y|α.

Montrer que si I est un intervalle et que α > 1, les fonctions α-höldériennes sont constantes.

Exercice 31+. ✓
Soit f ∈ C0(R+) dérivable sur R∗

+, de dérivée croissante, et telle que f(0) = 0.

Montrer que pour tout x ∈ R∗
+,

f(x)

x
⩽ f ′(x).

Exercice 32+.
Soit f : R −→ R une fonction dérivable telle que f ′(x) −−−−→

x→+∞ ℓ. Montrer
f(x)

x
−−−−→
x→+∞ ℓ.

Exercice 33. �
Étudier la dérivabilité en 0 de la fonction x 7→ cos(

√
x).

Exercice 34. ✓

Déterminer l’ensemble des points où la fonction f :

R → R

x 7→ arcsin
(

2x

1+ x2

)
est dérivable.

Dérivées supérieures

Exercice 35.
Soit f : R → R telle que ∀x ∈ R, f(x) = ex

√
3 sin x.

1. Montrer ∀n ∈ N, ∀x ∈ R, f(n)(x) = 2nex
√
3 sin

(
x+

nπ

6

)
.

2. Retrouver ce résultat à l’aide de l’exponentielle complexe.

Exercice 36. �

Soit f :

R → R

x 7→ 1

1+ x2
.

Montrer que la fonction f est lisse et que ∀n ∈ N∗, f(4n−1)(1) = 0.
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Exercice 37.
Soit (fn)n∈N une suite de fonctions définies sur ]0, 1[ par

f0 : x 7→ 1

1− x
et ∀n ∈ N, fn+1(x) = xf ′n(x).

1. Montrer que pour tout n ∈ N, il existe une fonction polynomiale Pn de degré n et à coefficients

dans N telle que ∀x ∈ ]0, 1[ , fn(x) =
Pn(x)

(1− x)(n+1)
.

2. En déduire que pour tout n ∈ N, fn est strictement positive.

Exercice 38+. ✓
Soit f : R → R définie par f(x) = e−1/x si x > 0 et f(x) = 0 sinon.

1. Montrer que f est lisse sur R∗
+ et que, pour tout n ∈ N, il existe une fonction polynomiale Pn

telle que
∀x > 0, f(n)(x) = e−1/xPn(1/x).

2. Montrer que f est lisse sur R.
3. Soit S un segment non trivial de R. Montrer qu’il existe h ∈ C∞(R) non nulle telle que h|R\S = 0.

Exercice 39+.

Soit f :


R → R

x 7→ {
e−x−2

cos
(
ex

−2
)

si x ̸= 0

0 si x = 0.

Montrer que ∀n ∈ N, f(x) = o
x→0

(xn). Quelle est la classe de régularité de f?

Exercice 40.
Soit f1, . . . , fn ∈ Cp(R). Montrer que f1 · · · fn ∈ Cp(R) et que

(f1 · · · fn)(p) =
∑

k1+···+kn=p

p!

k1! · · · kn!
f
(k1)
1 · · · f(kn)n .

Exercice 41.
Soit f ∈ Cn(R∗

+) et g : x 7→ f(1/x). Montrer que g ∈ Cn(R∗
+) et que

∀x ∈ R∗
+, g

(n)(x) = (−1)n
n−1∑
p=0

(
n

p

)
(n− 1)(n− 2) · · · (n− p)

x2n−p
f(n−p)

(
1

x

)
.

Exercice 42. ✓
Prolonger par continuité si besoin chacune des fonctions suivantes, puis étudier la classe de la fonc-
tion obtenue.

(i) f : x 7→ x sin
1

x
;

(ii) f : x 7→ x2 sin
1

x
;

(iii) f : x 7→ {√
x sin x si x > 0

x2 si x ⩽ 0 ;

(iv) f : x 7→ {
x+ a+ bex si x ⩾ 0

cos x− x si x < 0.
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Exercice 43. ✓
Soit f : R → R l’application définie par f(x) = ex + x.

1. Montrer que f est bijective.
2. Montrer que f−1 est dérivable et déterminer la valeur de (f−1) ′(1).
3. Montrer que f−1 est deux fois dérivable et donner la valeur de (f−1) ′′(1).

Exercice 44+.
Soit f ∈ D2(R) convergeant en ±∞.

Donner deux démonstrations (avec et sans le théorème de Darboux) du fait que f ′′ s’annule.

Exercice 45+. ✓
Soit n ∈ N. Soit f ∈ Dn(I), s’annulant n+ 1 fois sur I. Montrer que f(n) s’annule.

Exercice 46+.
Soit n ∈ N et f ∈ Dn(R) tels que f(0) = 0 et ∀k ∈ [[0, n− 1]], f(k)(1) = 0. Montrer que f(n) s’annule.

Exercice 47+. �
Soit f ∈ C2([0, 1]) telle que f(0) = f ′(0) = f(1) = f ′(1) = 0.

Montrer qu’il existe c ∈ [0, 1] tel que f ′′(c) = f(c).

Mélange

Exercice 48.
Soit f : R → C une fonction lisse et périodique. Montrer que f est lipschitzienne.

Exercice 49+. ✓
Soit f ∈ C2(R+) telle que f ′(0) = 0. Montrer qu’il existe g ∈ C1(R+) telle que ∀x ∈ R+, f(x) = g(x2).

Exercice 50+. �
Soit f : [0, 1] → [0, 1] dérivable telle que f ◦ f = f.

Montrer que f est soit constante, soit égale à l’identité.

Exercice 51++. �✓
Soit f ∈ C2(R+) telle que f(x) −−−−→

x→+∞ 0.

1. Si f ′′ est bornée, montrer f ′(x) −−−−→
x→+∞ 0.

2. Le résultat reste-t-il vrai sans l’hypothèse sur f ′′ ?

Exercice 52+.
Soit f ∈ C1(R) positive. Montrer qu’il existe une suite réelle (xn)n∈N telle que f ′(xn) −−−−−→

n→+∞ 0.
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Exercice 53+ (Nombre de Liouville). �

1. Soit P ∈ Z[X] de degré n ⩾ 1 et x une racine de P.

(a) Montrer qu’il existe une constante C > 0 telle que, pour tous a ∈ Z et b ∈ N∗, on ait(
P
(a
b

)
̸= 0 et

∣∣∣x− a

b

∣∣∣ ⩽ 1
)⇒ ∣∣∣x− a

b

∣∣∣ ⩾ C
bn

.

(b) En déduire qu’il existe une constante C ′ > 0 telle que, pour tous a ∈ Z et b ∈ N∗, on ait

a

b
̸= x ⇒ ∣∣∣x− a

b

∣∣∣ ⩾ C ′

bn
.

2. (a) Montrer que la suite

(
n∑

k=0

2−k!

)
n∈N

converge.

(b) Montrer que sa limite est un nombre transcendant, c’est-à-dire qu’elle n’est racine d’aucun
polynôme de Z[X] \ {0}.

Remarque. C’est historiquement le premier exemple de nombre transcendant (Liouville, 1844).

Exercice 54++. Ulm�
Soit P ∈ R[X] de degré n, et Q = P + P ′ + · · ·+ P(n).

Montrer que si P est à valeurs positives (c’est-à-dire que ∀x ∈ R,P(x) ⩾ 0), alors Q aussi.
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